Electrocorticographically controlled brain–computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants

Author:

Felton Elizabeth A.1,Wilson J. Adam1,Williams Justin C.12,Garell P. Charles123

Affiliation:

1. Departments of Biomedical Engineering and

2. Neurological Surgery, University of Wisconsin–Madison; and

3. Department of Neurological Surgery, William S. Middleton Memorial VA Medical Center, Madison, Wisconsin

Abstract

✓Brain–computer interface (BCI) technology can offer individuals with severe motor disabilities greater independence and a higher quality of life. The BCI systems take recorded brain signals and translate them into real-time actions, for improved communication, movement, or perception. Four patient participants with a clinical need for intracranial electrocorticography (ECoG) participated in this study. The participants were trained over multiple sessions to use motor and/or auditory imagery to modulate their brain signals in order to control the movement of a computer cursor. Participants with electrodes over motor and/or sensory areas were able to achieve cursor control over 2 to 7 days of training. These findings indicate that sensory and other brain areas not previously considered ideal for ECoG-based control can provide additional channels of control that may be useful for a motor BCI.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3