Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor

Author:

Sehba Fatima A.1,Friedrich Victor2,Makonnen Girma1,Bederson Joshua B.2

Affiliation:

1. 1Departments of Neurosurgery

2. 2Neuroscience, Mount Sinai School of Medicine, New York, New York

Abstract

Object Structural changes in brain parenchymal vessels occur within minutes after subarachnoid hemorrhage (SAH). These changes include platelet aggregation, activation of vascular collagenases, and destruction of perivascular collagen IV. Because collagen IV is an important component of the basal lamina, the authors attempted to further define changes in vascular structure (length and luminal diameter) and their relationship to vascular permeability immediately after SAH. In addition, the authors explored whether such alterations were attenuated by administration of a nitric oxide (NO) donor. Methods Endovascular perforation was used to induce SAH in rats. Two sets of experiments were performed. The first established changes in vascular structure and permeability (collagen IV and endothelial barrier antigen [EBA] dual immunofluorescence) during the first 24 hours after SAH. In the second, the investigators examined the effects of an NO donor on vascular structure, permeability, and collagenase activity (in situ zymography). In this second study, animals received intravenous infusion of the NO donor S-nitrosoglutathione (GSNO, 1 μM/8 μl/min) 15 minutes after induction of SAH and were killed 3 hours after SAH onset. Controls were naive unoperated animals for the first study and saline-infused SAH animals for the second. The authors found a time-dependent decrease in area fraction, length, and luminal diameter of collagen IV– and EBA-immunofluorescent vessels after SAH. The greatest change occurred at 3 hours after onset of SAH. Administration of GSNO was associated with striking preservation of collagen IV and EBA immunofluorescence compared with saline treatment. Zymography indicated decreased collagenase activity in GSNO-treated SAH animals compared with saline-treated SAH animals. Conclusions These results demonstrate changes in the structure and permeability of brain parenchymal microvessels after SAH and their reversal by treatment with an NO donor.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3