Author:
Qi Song-tao,Liu Yi,Pan Jun,Chotai Silky,Fang Lu-xiong
Abstract
Object
The completeness of meningioma resection depends on the resection of dura mater invaded by the tumor. The pathological changes of the dura around the tumor can be interpreted by evaluating the dural tail sign (DTS) on MRI studies. The goal of this study was to clarify the pathological characteristics of the DTSs, propose a classification based on the histopathological and radiological correlation, and identify the invasive range of tumor cells in different types of DTS.
Methods
The authors retrospectively reviewed 179 patients with convexity meningiomas who underwent Simpson Grade I resection. All patients underwent an enhanced MRI examination preoperatively. The convexity meningiomas were dichotomized into various subtypes in accordance with the 2007 WHO classification of tumors of the CNS, and the DTS was identified based on the Goldsher criteria. The range of resection of the involved dura was 3 cm from the base of the tumor, which corresponded with the length of DTS on MRI studies. Histopathological examination of dura at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 cm from the base of the tumor was conducted, and the findings were correlated with the preoperative MRI appearance of the DTS.
Results
A total of 154 (86%) of 179 convexity meningiomas were classified into WHO Grade I subtype, including transitional (44 [28.6%] of 154), meningothelial (36 [23.4%] of 154), fibrous (23 [14.9%] of 154), psammomatous (22 [14.3%] of 154), secretory (10 [6.5%] of 154), and angiomatous (19 [12.3%] of 154). The other 25 (14%) were non–Grade I (WHO) tumors, including atypical (12 [48%] of 25), anaplastic (5 [20%] of 25), and papillary (8 [32%] of 25). The DTS was classified into 5 types: smooth (16 [8.9%] of 179), nodular (36 [20.1%] of 179), mixed (57 [31.8%] of 179), symmetrical multipolar (15 [8.4%] of 179), and asymmetrical multipolar (55 [30.7%] of 179). There was a significant difference in distribution of DTS type between Grade I and non–Grade I tumors (p = 0.004), whereas the difference was not significant among Grade I tumors (0.841) or among non–Grade I tumors (p = 0.818). All smooth-type DTSs were encountered in Grade I tumors, and the mixed DTS (52 [33.8%] of 154) was the most common type in these tumors. Nodular-type DTS was more commonly seen in non–Grade I tumors (12 [48%] of 25). Tumor invasion was found in 88.3% (158 of 179) of convexity meningiomas, of which the range of invasion in 82.3% (130 of 158) was within 2 cm and that in 94.9% (150 of 158) was within 2.5 cm. The incidence of invasion and the range invaded by tumor cells varied in different types of DTS, and differences were statistically significant (p < 0.001).
Conclusions
Nodular-type DTS on MRI studies might be associated with non–Grade I tumors. The range of dural resection for convexity meningiomas should be 2.5 cm from the tumor base, and if this extent of resection is not feasible, the type of DTS should be considered. However, for skull base meningiomas, in which mostly Simpson Grade II resection is achieved, the use of this classification should be further validated. The classification of DTS enables the surgeon to predict preoperatively and then to achieve the optimal range of dural resection that might significantly reduce the recurrence rate of meningiomas.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology