Image processing and machine learning for telehealth craniosynostosis screening in newborns

Author:

Bookland Markus J.12,Ahn Edward S.3,Stoltz Petronella1,Martin Jonathan E.1

Affiliation:

1. Division of Neurosurgery, Connecticut Children’s, Hartford;

2. Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut; and

3. Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota

Abstract

OBJECTIVE The authors sought to evaluate the accuracy of a novel telehealth-compatible diagnostic software system for identifying craniosynostosis within a newborn (< 1 year old) population. Agreement with gold standard craniometric diagnostics was also assessed. METHODS Cranial shape classification software accuracy was compared to that of blinded craniofacial specialists using a data set of open-source (n = 40) and retrospectively collected newborn orthogonal top-down cranial images, with or without additional facial views (n = 339), culled between April 1, 2008, and February 29, 2020. Based on image quality, midface visibility, and visibility of the cranial equator, 351 image sets were deemed acceptable. Accuracy, sensitivity, and specificity were calculated for the software versus specialist classification. Software agreement with optical craniometrics was assessed with intraclass correlation coefficients. RESULTS The cranial shape classification software had an accuracy of 93.3% (95% CI 86.8–98.8; p < 0.001), with a sensitivity of 92.0% and specificity of 94.3%. Intraclass correlation coefficients for measurements of the cephalic index and cranial vault asymmetry index compared to optical measurements were 0.95 (95% CI 0.84–0.98; p < 0.001) and 0.67 (95% CI 0.24–0.88; p = 0.003), respectively. CONCLUSIONS These results support the use of image processing–based neonatal cranial deformity classification software for remote screening of nonsyndromic craniosynostosis in a newborn population and as a substitute for optical scanner– or CT-based craniometrics. This work has implications that suggest the potential for the development of software for a mobile platform that would allow for screening by telemedicine or in a primary care setting.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference26 articles.

1. Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery;Bhalodia;J Craniofac Surg,2020

2. "GrabCut"

3. The incidence of positional plagiocephaly: a cohort study;Mawji;Pediatrics,2013

4. Visual pattern recognition by moment invariants;Hu;IRE Trans Inf Theory,1962

5. Accessed November http www emgu com wiki index php Main;EMGU,2020

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3