Affiliation:
1. Swedish Neuroscience Institute, Swedish Medical Center, and
2. Radia Inc. PS, Everett, Washington
3. CellNetix Pathology and Laboratories, Seattle; and
Abstract
OBJECTIVE
Microcystic meningioma (MM) is a meningioma variant with a multicystic appearance that may mimic intrinsic primary brain tumors and other nonmeningiomatous tumor types. Dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI techniques provide imaging parameters that can differentiate these tumors according to hemodynamic and permeability characteristics with the potential to aid in preoperative identification of tumor type.
METHODS
The medical data of 18 patients with a histopathological diagnosis of MM were identified through a retrospective review of procedures performed between 2008 and 2012; DSC imaging data were available for 12 patients and DCE imaging data for 6. A subcohort of 12 patients with Grade I meningiomas (i.e., of meningoepithelial subtype) and 54 patients with Grade IV primary gliomas (i.e., astrocytomas) was also included, and all preoperative imaging sequences were analyzed. Clinical variables including patient sex, age, and surgical blood loss were also included in the analysis. Images were acquired at both 1.5 and 3.0 T. The DSC images were acquired at a temporal resolution of either 1500 msec (3.0 T) or 2000 msec (1.5 T). In all cases, parameters including normalized cerebral blood volume (CBV) and transfer coefficient (kTrans) were calculated with region-of-interest analysis of enhancing tumor volume. The normalized CBV and kTrans data from the patient groups were analyzed with 1-way ANOVA, and post hoc statistical comparisons among groups were conducted with the Bonferroni adjustment.
RESULTS
Preoperative DSC imaging indicated mean (± SD) normalized CBVs of 5.7 ± 2.2 ml for WHO Grade I meningiomas of the meningoepithelial subtype (n = 12), 4.8 ± 1.8 ml for Grade IV astrocytomas (n = 54), and 12.3 ± 3.8 ml for Grade I meningiomas of the MM subtype (n = 12). The normalized CBV measured within the enhancing portion of the tumor was significantly higher in the MM subtype than in typical meningiomas and Grade IV astrocytomas (p < 0.001 for both). Preoperative DCE imaging indicated mean kTrans values of 0.49 ± 0.20 min−1 in Grade I meningiomas of the meningoepithelial subtype (n = 12), 0.27 ± 0.12 min−1 for Grade IV astrocytomas (n = 54), and 1.35 ± 0.74 min−1 for Grade I meningiomas of the MM subtype (n = 6). The kTrans was significantly higher in the MM variants than in the corresponding nonmicrocystic Grade 1 meningiomas and Grade IV astrocytomas (p < 0.001 for both). Intraoperative blood loss tended to increase with increased normalized CBV (R = 0.45, p = 0.085).
CONCLUSIONS
An enhancing cystic lesion with a normalized CBV greater than 10.3 ml or a kTrans greater than 0.88 min−1 should prompt radiologists and surgeons to consider the diagnosis of MM rather than traditional Grade I meningioma or high-grade glioma in planning surgical care. Higher normalized CBVs tend to be associated with increased intraoperative blood loss.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Reference42 articles.
1. Ultra-structural profile of microcystic meningioma;Cuccurullo;Pathologica,2009
2. Predicting outcomes of patients with intracranial meningiomas using molecular markers of hypoxia, vascularity, and proliferation;Jensen;Neurosurgery,2012
3. Revising the World Health Organization (WHO) Blue Book—‘Histological typing of tumours of the central nervous system’;Burger;J Neurooncol,1995
4. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla;Larsson;Magn Reson Med,2009
5. Microcystic meningioma--a rarely occurring morphological variant of meningioma;Kuchna;Folia Neuropathol,1994
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献