Design of a synthetic simulator for pediatric lumbar spine pathologies

Author:

Mattei Tobias A.1,Frank Christopher2,Bailey Joshua2,Lesle Edna2,Macuk Alyssa2,Lesniak Matthew2,Patel Ankit2,Morris Martin J.2,Nair Kalyani2,Lin Julian J.1

Affiliation:

1. Department of Neurosurgery, University of Illinois College of Medicine, Illinois Neurological Institute; and

2. Department of Mechanical Engineering, Bradley University, Peoria, Illinois

Abstract

Object Simulation has become an important tool in neurosurgical education as part of the complex process of improving residents' technical expertise while preserving patient safety. Although different simulators have already been designed for a variety of neurosurgical procedures, spine simulators are still in their infancy and, at present, there is no available simulator for lumbar spine pathologies in pediatric neurosurgery. In this paper the authors describe the peculiarities and challenges involved in developing a synthetic simulator for pediatric lumbar spine pathologies, including tethered spinal cord syndrome and open neural tube defects. Methods The Department of Neurosurgery of the University of Illinois at Peoria, in a joint program with the Mechanical Engineering Department of Bradley University, designed and developed a general synthetic model for simulating pediatric neurosurgical interventions on the lumbar spine. The model was designed to be composed of several sequential layers, so that each layer might closely mimic the tensile properties of the natural tissues under simulation. Additionally, a system for pressure monitoring was developed to enable precise measurements of the degree of manipulation of the spinal cord. Results The designed prototype successfully simulated several scenarios commonly found in pediatric neurosurgery, such as tethered spinal cord, retethered spinal cord, and fatty terminal filum, as well as meningocele, myelomeningocele, and lipomyelomeningocele. Additionally, the formulated grading system was able to account for several variables involved in the qualitative evaluation of the technical performance during the training sessions and, in association with an expert qualitative analysis of the recorded sessions, proved to be a useful feedback tool for the trainees. Conclusions Designing and building a synthetic simulator for pediatric lumbar spine pathologies poses a wide variety of unique challenges. According to the authors' experience, a modular system composed of separable layers that can be independently replaced significantly enhances the applicability of such a model, enabling its individualization to distinctive but interrelated pathologies. Moreover, the design of a system for pressure monitoring (as well as a general score that may be able to account for the overall technical quality of the trainee's performance) may further enhance the educational applications of a simulator of this kind so that it can be further incorporated into the neurosurgical residency curriculum for training and evaluation purposes.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3