Deep brain stimulation electrodes used for staged lesion within the basal ganglia: experimental studies for parameter validation

Author:

Raoul Sylvie1,Leduc Dominique2,Vegas Thomas2,Sauleau Paul3,Lozano Andres M.4,Vérin Marc3,Damier Philippe5,Lajat Youenn1

Affiliation:

1. Department of Neurosurgery, Centre Hospitalier Universitaire de Nantes;

2. Faculté des Sciences, Université de Nantes, Nantes Atlantique Universités, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique;

3. Department of Neurology, Centre Hospitalier Universitaire de Rennes;

4. Department of Neuroscience, Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada

5. Department of Neurology, Clinical Investigation Center, Institut National de la Santé et de la Recherche Médicale UMR 643, Centre Hospitalier Universitaire de Nantes, France; and

Abstract

Object Deep brain stimulation (DBS) has been shown to be an effective treatment for various types of movement disorders. High-frequency stimulation is applied to specific brain targets through an implanted quadripolar lead connected to a pulse generator. These leads can be used for creating lesions in the brain. The experimental study reported here was designed to examine the electrical parameters that could be used to create reproducible therapeutic lesions in the brain. Methods Egg whites were used to measure the relationship between the electrical parameters (current and voltage) applied through the DBS electrode and the size of coagulum. The authors measured current spread from the electrode contact used for lesioning to the adjacent contact. Similar studies were performed in the pallidum or the thalamus of human cadavers. Modeling of the lesion size was performed with simulation of current density and temperature. The ultrastructure of the electrodes after lesioning was verified by electron microscopy. Results Coagulation size increased with time but reached a plateau after 30 seconds. For a given set of electrical parameters, reproducibility of the size of lesions was high. Using constant voltage, lesions were larger in egg whites than in cadaveric brains with a mean length of 5 ± 0.6 mm in egg whites at 40 V, 125 mA, impedance 233 Ω; and 4.0 ± 0.8 mm in cadavers at 40 V, 38 mA, impedance 1333 Ω. Computer modeling indicated negligible current flow to the adjacent, unused electrodes. The electrodes showed no structural alterations on scanning electron microscopy after more than 200 lesions. Conclusions Results of this study demonstrate that DBS electrodes can be used to generate lesions reproducibly in the brain. The choice of lesioning parameters must take into account differences in impedance between the test medium (egg whites) and the human brain parenchyma.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3