Surgeon and staff radiation exposure in minimally invasive spinal surgery: prospective series using a personal dosimeter

Author:

Godzik Jakub1,Mastorakos George M.2,Nayar Gautam3,Hunter William D.4,Tumialán Luis M.15

Affiliation:

1. Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona;

2. Mayo Clinic Alix School of Medicine, Scottsdale, Arizona;

3. Duke University School of Medicine, Department of Neurosurgery, Durham, North Carolina;

4. Department of Neurosurgery, CaroMont Health Regional Medical Center, Gastonia, North Carolina; and

5. Spine Group Arizona, HonorHealth, Greenbaum Surgical Specialty Hospital, Scottsdale, Arizona

Abstract

OBJECTIVEThe level of radiation awareness by surgeons and residents in spinal surgery does not match the ubiquity of fluoroscopy in operating rooms in the United States. The present method of monitoring radiation exposure may contribute to the current deficiency in radiation awareness. Current dosimeters involve a considerable lag from the time that the surgical team is exposed to radiation to the time that they are provided with that exposure data. The objective of the current study was to assess the feasibility of monitoring radiation exposure in operating room personnel during lateral transpsoas lumbar interbody fusion (LLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) procedures by using a wearable personal device with real-time feedback.METHODSOperating room staff participating in minimally invasive surgical procedures under a single surgeon during a 6-month period were prospectively enrolled in this study. All radiation dose exposures were recorded for each member of the surgical team (surgeon, assistant surgeon, scrub nurse, and circulating nurse) using a personal dosimeter (DoseAware). Radiation doses were recorded in microsieverts (μSv). Comparisons between groups were made using ANOVA with the Tukey post hoc test and Student t-test.RESULTSThirty-nine patients underwent interbody fusions: 25 underwent LLIF procedures (14 LLIF alone, 11 LLIF with percutaneous screw placement [PSP]) and 14 underwent MI-TLIF. For each operative scenario per spinal level, the surgeon experienced significantly higher (p < 0.035) average radiation exposure (LLIF: 167.9 μSv, LLIF+PSP: 424.2 μSv, MI-TLIF: 397.9 μSv) than other members of the team, followed by the assistant surgeon (LLIF: 149.7 μSv, LLIF+PSP: 242.3 μSv, MI-TLIF: 274.9 μSv). The scrub nurse (LLIF: 15.4 μSv, LLIF+PSP: 125.7 μSv, MI-TLIF: 183.0 μSv) and circulating nurse (LLIF: 1.2 μSv, LLIF+PSP: 9.2 μSv, MI-TLIF: 102.3 μSv) experienced significantly lower exposures. Radiation exposure was not correlated with the patient’s body mass index (p ≥ 0.233); however, it was positively correlated with increasing patient age (p ≤ 0.004).CONCLUSIONSReal-time monitoring of radiation exposure is currently feasible and shortens the time between exposure and the availability of information regarding that exposure. A shortened feedback loop that offers more reliable and immediate data would conceivably raise the level of concern for radiation exposure in spinal surgeries and could alter patterns of behavior, leading to decreased exposures. Further studies are ongoing to determine the effect of real-time dosimetry in spinal surgery.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3