Technique for the localization of intracranially implanted electrodes

Author:

Darcey Terrance M.12,Roberts David W.2

Affiliation:

1. Sections of Neurology and

2. Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire

Abstract

Object The anatomical localization of electrodes in the human brain is important for the interpretation of pathophysiological (epileptifom spikes, seizures) and functional data (stimulation mapping, evoked potentials). Electroencephalography and evoked potentials are volume-conducted field effects that are most easily interpreted with knowledge of the location and topology of adjacent structures, and brain stimulation techniques produce current fields whose effects are highly dependent on the geometry of electrode assemblies in relation to adjacent structures. In this paper, the authors describe a straightforward method for implanted electrode localization, and detail their experience to date with the technique. Methods The described method is based on the coregistration of preoperative MR imaging studies with postimplant CT scans by using standard mutual information optimization of rigid body transformation of the CT to the MR image. Fused images of the MR and thresholded CT images are derived, and electrodes are visualized using various standard computer projections, renderings, and measurement tools. Results The authors have successfully used the described method over an extended period to localize electrode contacts in intracranial implants for seizure localization, and in long-term implants for movement disorders and seizure control. The accuracy of localization is very good, although it is dependent on image quality and possible brain shift between acquisition of the CT and MR images. Conclusions This method is easily implemented and is useful for a wide variety of clinical and research applications. It is a straightforward process to extend it to additional image modalities that are emerging for surgical planning and image guidance.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3