Tissue localization during resective epilepsy surgery

Author:

Poliachik Sandra L.123,Poliakov Andrew V.24,Jansen Laura A.56,McDaniel Sharon S.15,Wray Carter D.15,Kuratani John153,Saneto Russell P.153,Ojemann Jeffrey G.4768,Novotny Edward J.1568

Affiliation:

1. 1Divisions of Pediatric Neurology,

2. 2Pediatric Radiology, and

3. 6Centers for Clinical and Translational Research and

4. 3Pediatric Neurosurgery, Seattle Children's Hospital;

5. 4Departments of Neurology and

6. 7Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington

7. 5Neurosurgery, and

8. 8Integrative Brain Imaging Center, University of Washington; and

Abstract

Object Imaging-guided surgery (IGS) systems are widely used in neurosurgical practice. During epilepsy surgery, the authors routinely use IGS landmarks to localize intracranial electrodes and/or specific brain regions. The authors have developed a technique to coregister these landmarks with pre- and postoperative scans and the Montreal Neurological Institute (MNI) standard space brain MRI to allow 1) localization and identification of tissue anatomy; and 2) identification of Brodmann areas (BAs) of the tissue resected during epilepsy surgery. Tracking tissue in this fashion allows for better correlation of patient outcome to clinical factors, functional neuroimaging findings, and pathological characteristics and molecular studies of resected tissue. Methods Tissue samples were collected in 21 patients. Coordinates from intraoperative tissue localization were downloaded from the IGS system and transformed into patient space, as defined by preoperative high-resolution T1-weighted MRI volume. Tissue landmarks in patient space were then transformed into MNI standard space for identification of the BAs of the tissue samples. Results Anatomical locations of resected tissue were identified from the intraoperative resection landmarks. The BAs were identified for 17 of the 21 patients. The remaining patients had abnormal brain anatomy that could not be meaningfully coregistered with the MNI standard brain without causing extensive distortion. Conclusions This coregistration and landmark tracking technique allows localization of tissue that is resected from patients with epilepsy and identification of the BAs for each resected region. The ability to perform tissue localization allows investigators to relate preoperative, intraoperative, and postoperative functional and anatomical brain imaging to better understand patient outcomes, improve patient safety, and aid in research.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3