Author:
Benzel Edward C.,Baldwin Nevan G.
Abstract
✓ An ideal spinal construct should immobilize only the unstable spinal segments, and thus only the segments fused. Pedicle fixation techniques have provided operative stabilization with the instrumentation of a minimal number of spinal segments; however, some failures have been observed with pedicle instrumentation. These failures are primarily related to excessive preload forces and limitations caused by the size and orientation of the pedicles.
To circumvent these problems, a new technique, the crossed-screw fixation method, was developed and is described in this report. This technique facilitates short-segment spinal fixation and uses a lateral extracavitary approach, which provides generous exposure for spinal decompression and interbody fusion. The technique employs two large transverse vertebral body screws (6.5 to 8.5 mm in diameter) to bear axial loads, and two unilateral pedicle screws (placed on the side of the exposure) to restrict flexion and extension deformation around the transverse screws and to provide three-dimensional deformity correction. The horizontal vertebral body and the pedicle screws are connected to rods and then to each other via rigid crosslinking. The transverse vertebral body screws are unloaded during insertion by placing the construct in a compression mode after the interbody bone graft is placed, thus optimizing the advantage gained by the significant “toe-in” configuration provided and further decreasing the chance for instrumentation failure.
The initial results of this technique are reported in a series of 10 consecutively treated patients, in whom correction of the deformity was facilitated. Follow-up examination (average 10.1 months after surgery) demonstrated negligible angulation. Chronic pain was minimal. The crossed-screw fixation technique is biomechanically sound and offers a rapid and safe form of short-segment three-dimensional deformity correction and solid fixation when utilized in conjunction with the lateral extracavitary approach to the unstable thoracic and lumbar spine. This approach also facilitates the secure placement of an interbody bone graft.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献