A comparative study on the pharmacokinetics and biodistribution of boronated porphyrin (BOPP) and sulfhydryl boron hydride (BSH) in the RG2 rat glioma model

Author:

Ceberg Crister P.,Brun Arne,Kahl Stephen B.,Koo Myoung Seo,Persson Bertil R. R.,Salford Leif G.

Abstract

✓ Boron neutron capture therapy is a treatment modality for cancer that depends on the specific uptake of boron by the tumor cells. The infiltrative growth of malignant gliomas requires that boron reach and accumulate in migrating cells outside the margin of the tumor; thus, it is important that the biodistribution of new boron compounds is also studied in the surrounding healthy brain tissue. This study is undertaken in the present work, in which the biodistribution and pharmacokinetics of sulfhydryl boron hydride (BSH) and boronated porphyrin (BOPP) in the RG2 rat glioma model are investigated. This model mimics the characteristics of human glioma with cells migrating into the surrounding brain. The animals were infused intravenously with either BSH (25 µg or 175 µg of boron per gram of body weight) or BOPP (12 µg of boron per gram body weight). For the low dose of BSH, the maximum tumor—boron content was 8 ppm at approximately 9 hours after the infusion with a tumor-to-blood ratio of 0.6. At the higher dose, the corresponding figures were 15 ppm after 12 hours with a tumor-to-blood ratio of 0.5. For BOPP, a tumor—boron concentration of 81 ppm was achieved 24 hours after the infusion and sustained in that range for at least 72 hours. The tumor-to-blood ratio at 24 hours was slightly above 6, but continued to increase as the blood was cleared. These results indicate that both compounds are spread into the normal brain tissue following the same pathways as the migrating tumor cells and in this way can be taken up even in distant tumor cell foci.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3