Author:
Yamakami Iwao,Vink Robert,Faden Alan I.,Gennarelli Thomas A.,Lenkinski Robert,McIntosh Tracy K.
Abstract
✓ Using the lateral fluid-percussion model of experimental brain injury in the rat, the authors investigated the effect of acute ethanol (EtOH) intoxication on cardiovascular changes, neurological motor deficits, brain bioenergetics, and mortality associated with traumatic brain injury. Two hours after gastric administration of EtOH (low dose in 20 animals, 1.5 g/kg; high dose in 28, 3.0 g/kg) or saline (equal volume), animals were subjected to a fluid-percussion brain injury centered over the left parietal cortex. These injuries were of either moderate (X = 2.2 atm; 10 animals/treatment) or high severity (X = 3.0 atm; 18 animals/saline, 10 animals/low-dose EtOH, and 18 animals/high-dose EtOH). Neurological motor function was evaluated daily over a 1-week period, while a subset of eight animals receiving high-dose EtOH and subjected to brain injury of high severity were monitored for 4 hours using phosphorus-31 nuclear magnetic resonance spectroscopy to determine intracellular pH, free magnesium, and brain cytosolic phosphorylation potential. A significant (p < 0.05) and prolonged (up to 1 hour) hypotension was observed in animals pretreated with either low- or high-dose EtOH. Neither low-dose (blood—EtOH concentration = 110 ± 40 mg/dl) nor high-dose (blood—EtOH = 340 ± 70 mg/dl) EtOH had any effect on survival or neurological motor function after moderate brain injury. Following severe brain injury, animals pretreated with high-dose (blood—EtOH concentration = 352 ± 65 mg/dl) EtOH showed a significantly increased mortality and markedly worsened neurological deficits at 24 hours postinjury. Following injury, free magnesium and cytosolic phosphorylation potential declined in both groups by approximately 50% to 60%, with no significant differences between groups with respect to these variables. In contrast, brain intracellular pH in the EtOH-treated animals was consistently higher than in the control group after injury. These data suggest that prior exposure to EtOH, particularly at high concentrations, may have detrimental effects on neurobehavioral function and survival in the acute period (up to 24 hours) after severe brain injury, and may be associated with posttraumatic cerebral alkalosis.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献