Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws

Author:

Ryken Timothy C.,Clausen John D.,Traynelis Vincent C.,Goel Vijay K.

Abstract

✓ The bone mineral density (BMD) of 99 cadaveric cervical vertebral bodies (C3–7) was determined using dual x-ray absorptiometry. The vertebral bodies were randomly assigned to receive either a unicortical (51 bodies) or bicortical (48 bodies) Caspar cervical plating screw. The initial insertion torque was measured using a digital electronic torque wrench, and the force required to withdraw the screw from the vertebral body was determined. The mean BMD for the total group of 99 was 0.787 ± 0.154 g/cm2, the mean insertion torque was 0.367 ± 0.243 newton-meters, and the mean pullout force was 210.4 ± 158.1 newtons. A significant correlation was noted between BMD and torque (p < 0.0001, r = 0.42), BMD and pullout force (p < 0.0001, r = 0.54), and torque and pullout force (p < 0.0001, r = 0.88). Although the BMD of the unicortical and bicortical groups was equivalent (p = 0.92), the insertion torque and pullout force differed significantly (p = 0.02 and p = 0.008, respectively) for the unicortical and bicortical groups. A holding index for each screw and insertion technique was defined as the product of the BMD and insertion torque. The calculated holding index and resultant pullout force were significantly correlated for both techniques of screw insertion (r = 0.92), and a significant difference in holding index was observed with unicortical versus bicortical screw placement (p = 0.04). The determination of BMD and measurement of insertion torque to create a unique holding index provides an assessment of bone—screw interaction and holding strength of the screw, both of which impact on the resultant stability of cervical instrumentation. As the number of cervical plating systems increases, the determination of a holding index for various screws and insertion techniques may assist in the comparison of cervical instrumentation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3