Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures

Author:

Mathern Gary W.,Pretorius James K.,Babb Thomas L.

Abstract

✓ Quantified hippocampal mossy fiber synaptic reorganization and neuron losses were measured to determine the pathological features associated with epileptogenic fascia dentata. Twenty-five patients with temporal lobe epilepsy (TLE) were classified as having either mesial temporal sclerosis (MTS; 16 patients), with seizure genesis in the hippocampus, or temporal mass lesions (nine patients), with seizures that were probably extrahippocampal. Neo-Timm's histochemistry identified mossy fiber sprouting, and aberrant fascia dentata puncta densities were objectively measured by light microscopic analysis on an image-analysis computer. Neuron densities determined cell losses and the two seizure groups were compared to control specimens obtained from autopsies. Results showed significantly greater fascia dentata mossy fiber puncta densities and neuron losses in TLE patients compared to autopsy specimens (p < 0.026). Furthermore, there were significant differences between the two seizure groups: 1) mossy fiber puncta densities in the inner molecular layer were significantly greater in MTS compared to lesions (p < 0.02), and 2) mossy fiber puncta densities were greater in the inner molecular layer than in the stratum granulosum in 14 of 16 MTS patients (88%) compared to four of nine patients with lesions (44%, p < 0.01). Neuron densities were significantly different comparing MTS, lesion and control groups for stratum granulosum (p = 0.0001) and Ammon's horn (p = 0.0001), with each group significantly different (p < 0.05) compared to another. All patients were either seizure-free or significantly improved 1 year or more after en bloc temporal lobectomy. There were no significant correlations between fascia dentata mossy fiber puncta densities and counts of hilar neurons, CA4 pyramids, granule cells, or years of seizures. This indicates that inner molecular layer mossy fiber puncta densities and neuron losses are greater in patients with MTS than in those with lesions, and mossy fiber sprouting probably contributes to the pathophysiology of hippocampal seizures. Furthermore, these data show that some patients with extrahippocampal lesions have mossy fiber sprouting similar to MTS patients, suggesting that hippocampi in lesion patients may be capable of epileptogenesis from synaptic reorganization.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3