Quantitative contrast-enhanced ultrasound measurement of cerebrospinal fluid flow for the diagnosis of ventricular shunt malfunction

Author:

Hartman Robin1,Aglyamov Salavat1,Fox Douglas J.2,Emelianov Stanislav1

Affiliation:

1. Department of Biomedical Engineering, University of Texas at Austin; and

2. NeuroTexas Institute, St. David’s Hospital, Austin, Texas

Abstract

OBJECT Cerebral shunt malfunction is common but often difficult to effectively diagnose. Current methods are invasive, involve ionizing radiation, and can be costly. The authors of this study investigated the feasibility of quantitatively measuring CSF flow in a shunt catheter using contrast-enhanced ultrasound. METHODS A syringe pump was used to push a solution of gas-filled microbubbles at specific flow rates through a shunt catheter while a high-frequency ultrasound imaging system was used to collect ultrasound images for offline processing. Displacement maps and velocity profiles were generated using a speckle-tracking method based on a cross-correlation algorithm. An additional correction factor, to account for a predictable underestimation and to adjust the measured flow rates, was calculated based on the geometry of the ultrasound imaging plane and assuming a simple model of laminar flow. RESULTS The developed method was able to differentiate between physiologically relevant flow rates, including no flow and 0.006 to 0.09 ml/min, with reasonable certainty. The quantitative measurement of flow rates through the catheter using this method was determined to be in good agreement with the expected flow rate. CONCLUSIONS This study demonstrated that contrast-enhanced ultrasound has the potential to be used as a minimally invasive and cost-effective alternative method for outpatient shunt malfunction diagnosis.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3