Glioma surgery using a multimodal navigation system with integrated metabolic images

Author:

Tanaka Yoji1,Nariai Tadashi1,Momose Toshiya1,Aoyagi Masaru1,Maehara Taketoshi1,Tomori Toshiki1,Yoshino Yoshikazu1,Nagaoka Tsukasa12,Ishiwata Kiichi3,Ishii Kenji3,Ohno Kikuo1

Affiliation:

1. Department of Neurosurgery, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku;

2. Yerkes Imaging Center, Division of Neuroscience, Yerkes National Primate Center, Emory University, Atlanta, Georgia

3. Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan and

Abstract

Object A multimodal neuronavigation system using metabolic images with PET and anatomical images from MR images is described here for glioma surgery. The efficacy of the multimodal neuronavigation system was evaluated by comparing the results with that of the conventional navigation system, which routinely uses anatomical images from MR and CT imaging as guides. Methods Thirty-three patients with cerebral glioma underwent 36 operations with the aid of either a multimodal or conventional navigation system. All of the patients were preliminarily examined using PET with l-methyl-[11C] methionine (MET) for surgical planning. Seventeen of the operations were performed with the multimodal navigation system by integrating the MET-PET images with anatomical MR images. The other 19 operations were performed using a conventional navigation system based solely on MR imaging. Results The multimodal navigation system proved to be more useful than the conventional navigation system in determining the area to be resected by providing a clearer tumor boundary, especially in cases of recurrent tumor that had lost a normal gyral pattern. The multimodal navigation system was therefore more effective than the conventional navigation system in decreasing the mass of the tumor remnant in the resectable portion. A multivariate regression analysis revealed that the multimodal navigation system–guided surgery benefited patient survival significantly more than the conventional navigation–guided surgery (p = 0.016, odds ratio 0.52 [95% confidence interval 0.29–0.88]). Conclusions The authors' preliminary intrainstitutional comparison between the 2 navigation systems suggested the possible premise of multimodal navigation. The multimodal navigation system using MET-PET fusion imaging is an interesting technique that may prove to be valuable in the future.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3