A quantitative model to differentiate nonaneurysmal perimesencephalic subarachnoid hemorrhage from aneurysmal etiology

Author:

Mandel Daniel1,Moody Scott12,Pan Kelly3,Subramaniam Thanujaa4,Thompson Bradford B.15,Wendell Linda C.156,Reznik Michael E.15,Furie Karen L.1,Mahta Ali156

Affiliation:

1. Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island;

2. Department of Physician Assistant Studies, Massachusetts General Hospital Institute of Health Professions, Boston, Massachusetts;

3. Warren Alpert Medical School of Brown University, Providence, Rhode Island;

4. Department of Neurology, Yale University School of Medicine, New Haven, Connecticut;

5. Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; and

6. Section of Medical Education, Warren Alpert Medical School of Brown University, Providence, Rhode Island

Abstract

OBJECTIVE Nonaneurysmal perimesencephalic subarachnoid hemorrhage (pmSAH) is considered to have a lower-risk pattern than other types of subarachnoid hemorrhage (SAH). However, a minority of patients with pmSAH may harbor a causative posterior circulation aneurysm. To exclude this possibility, many institutions pursue exhaustive imaging. In this study the authors aimed to develop a novel predictive model based on initial noncontrast head CT (NCHCT) features to differentiate pmSAH from aneurysmal causes. METHODS The authors retrospectively reviewed patients admitted to an academic center for treatment of a suspected aneurysmal SAH (aSAH) during the period from 2016 to 2021. Patients with a final diagnosis of pmSAH or posterior circulation aSAH were included. Using NCHCT, the thickness (continuous variable) and location of blood in basal cisterns and sylvian fissures (categorical variables) were compared between groups. A scoring system was created using features that were significantly different between groups. Receiver operating characteristic curve analysis was used to measure the accuracy of this model in predicting aneurysmal etiology. A separate patient cohort was used for external validation of this model. RESULTS Of 420 SAH cases, 48 patients with pmSAH and 37 with posterior circulation aSAH were identified. Blood thickness measurements in the crural and ambient cisterns and interhemispheric and sylvian fissures and degree of extension into the sylvian fissure were all significantly different between groups (all p < 0.001). The authors developed a 10-point scoring model to predict aneurysmal causes with high accuracy (area under the curve [AUC] 0.99; 95% CI 0.98–1.00; OR per point increase 10; 95% CI 2.18–46.4). External validation resulted in persistently high accuracy (AUC 0.97; 95% CI 0.92–1.00) of this model. CONCLUSIONS A risk stratification score using initial blood clot burden may accurately differentiate between aneurysmal and nonaneurysmal pmSAH. Larger prospective studies are encouraged to further validate this quantitative tool.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3