Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles

Author:

Szerlip Nicholas J.12,Walbridge Stuart1,Yang Linda3,Morrison Paul F.4,Degen Jeffrey W.1,Jarrell S. Taylor15,Kouri Joshua1,Kerr P. Benjamin15,Kotin Robert3,Oldfield Edward H.1,Lonser Russell R.1

Affiliation:

1. Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke;

2. Department of Neurosurgery, University of Maryland Medical Center, Baltimore, Maryland; and

3. Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute; and

4. Division of Bioengineering and Physical Science, Office of Research Services, National Institutes of Health, Bethesda, Maryland;

5. Department of Neurosurgery, George Washington University, Washington, DC

Abstract

Object Despite recent evidence showing that convection-enhanced delivery (CED) of viruses and virus-sized particles to the central nervous system (CNS) is possible, little is known about the factors influencing distribution of these vectors with convection. To better define the delivery of viruses and virus-sized particles in the CNS, and to determine optimal parameters for infusion, the authors coinfused adeno-associated virus ([AAV], 24-nm diameter) and/or feru-moxtran-10 (24 nm) by using CED during real-time magnetic resonance (MR) imaging. Methods Sixteen rats underwent intrastriatal convective coinfusion with 4 μl of 35S-AAV capsids (0.5–1.0 × 1014 viral particles/ml) and increasing concentrations (0.1, 0.5, 1, and 5 mg/ml) of a similar sized iron oxide MR imaging agent (ferumoxtran-10). Five nonhuman primates underwent either convective coinfusion of 35S-AAV capsids and 1 mg/ml ferumoxtran-10 (striatum, one animal) or infusion of 1 mg/ml ferumoxtran-10 alone (striatum in two animals; frontal white matter in two). Clinical effects, MR imaging studies, quantitative autoradiography, and histological data were analyzed. Results Real-time, T2-weighted MR imaging of ferumoxtran-10 during infusion revealed a clearly defined hypo-intense region of perfusion. Quantitative autoradiography confirmed that MR imaging of ferumoxtran-10 at a concentration of 1 mg/ml accurately tracked viral capsid distribution in the rat and primate brain (the mean difference in volume of distribution [Vd] was 7 and 15% in rats and primates, respectively). The Vd increased linearly with increasing volume of infusion (Vi) (R2 = 0.98). The mean Vd/Vi ratio was 4.1 ± 0.2 (mean ± standard error of the mean) in gray and 2.3 ± 0.1 in white matter (p < 0.01). The distribution of infusate was homogeneous. Postinfusion MR imaging revealed leakback along the cannula track at infusion rates greater than 1.5 μl/minute in primate gray and white matter. No animal had clinical or histological evidence of toxicity. Conclusions The CED method can be used to deliver AAV capsids and similar sized particles to the CNS safely and effectively over clinically relevant volumes. Moreover, real-time MR imaging of ferumoxtran-10 during infusion reveals that AAV capsids and similar sized particles have different convective delivery properties than smaller proteins and other compounds.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3