Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage

Author:

Iseda Keiichi,Ono Shigeki,Onoda Keisuke,Satoh Motoyoshi,Manabe Hiroaki,Nishiguchi Mitsuhisa,Takahashi Kenji,Tokunaga Koji,sugiu Kenji,Date Isao

Abstract

Object Inflammation in the subarachnoid space and apoptosis of arterial endothelial cells have been implicated in the development of delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). The authors investigated mechanisms of possible antivasospastic effects of N-benzyl-oxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), a caspase inhibitor that can inhibit both inflammatory and apoptotic systems, in animal models of SAH. Methods Rabbits were assigned to three groups of eight animals each and were subjected to SAH by injection of blood into the cisterna magna. The experiments were performed in the following groups: SAH only, SAH + vehicle, and SAH + Z-VAD-FMK. The Z-VAD-FMK (1 mg) or vehicle (5% dimethyl sulfoxide) was intrathecally administered before SAH induction. Diameters of the basilar artery (BA) were measured on angiograms obtained before and 2 days after SAH. The BA diameter on Day 2 was expressed as a percentage of that before SAH. Interleukin (IL)–1β in the cerebrospinal fluid (CSF) was examined using Western blotting, and brains were immunohistochemically examined for caspase-1 and IL-1β. In a separate experiment, 20 rats were subjected to SAH and their brains were immunohisto-chemically assessed for caspase-1, IL-1β, and macrophages. Results In rabbits, Z-VAD-FMK significantly attenuated cerebral vasospasm (the BA diameter on Day 2 in SAH-only, SAH + vehicle, and SAH + Z-VAD-FMK groups was 66.6 ± 3.2%, 66.3 ± 3.7%, and 82.6 ± 4.9% of baseline, respectively), and suppressed IL-1β release into the CSF and also suppressed immunoreactivities of caspase-1 and IL-1β in macrophages infiltrating into the subarachnoid space. Immunoreactivities for caspase-1 and IL-1β were observed in immunohistochemically proven infiltrating macrophages in rats. Conclusions These results indicate that caspase activation may be involved in the development of SAH-induced vasospasm through inflammatory reaction.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3