Quality assessment of a new surgical simulator for neuroendoscopic training

Author:

Filho Francisco Vaz Guimarães1,Coelho Giselle2,Cavalheiro Sergio1,Lyra Marcos3,Zymberg Samuel T.1

Affiliation:

1. 1Discipline of Neurosurgery, Escola Paulista de Medicina da Universidade Federal de São Paulo;

2. 2Curitiba Neurological Institute, Curitiba; and

3. 3Department of Gynecology, Universidade Federal de Pernambuco, Recife, Brasil

Abstract

Object Ideal surgical training models should be entirely reliable, atoxic, easy to handle, and, if possible, low cost. All available models have their advantages and disadvantages. The choice of one or another will depend on the type of surgery to be performed. The authors created an anatomical model called the S.I.M.O.N.T. (Sinus Model Oto-Rhino Neuro Trainer) Neurosurgical Endotrainer, which can provide reliable neuroendoscopic training. The aim in the present study was to assess both the quality of the model and the development of surgical skills by trainees. Methods The S.I.M.O.N.T. is built of a synthetic thermoretractable, thermosensible rubber called Neoderma, which, combined with different polymers, produces more than 30 different formulas. Quality assessment of the model was based on qualitative and quantitative data obtained from training sessions with 9 experienced and 13 inexperienced neurosurgeons. The techniques used for evaluation were face validation, retest and interrater reliability, and construct validation. Results The experts considered the S.I.M.O.N.T. capable of reproducing surgical situations as if they were real and presenting great similarity with the human brain. Surgical results of serial training showed that the model could be considered precise. Finally, development and improvement in surgical skills by the trainees were observed and considered relevant to further training. It was also observed that the probability of any single error was dramatically decreased after each training session, with a mean reduction of 41.65% (range 38.7%–45.6%). Conclusions Neuroendoscopic training has some specific requirements. A unique set of instruments is required, as is a model that can resemble real-life situations. The S.I.M.O.N.T. is a new alternative model specially designed for this purpose. Validation techniques followed by precision assessments attested to the model's feasibility.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3