The role of optical spectroscopy in epilepsy surgery in children

Author:

Bhatia Sanjiv12,Ragheb John12,Johnson Mahlon3,Oh Sanghoon14,Sandberg David I.12,Lin Wei-Chiang14

Affiliation:

1. 1Brain Institute, Miami Children's Hospital, Miami;

2. 2Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida;

3. 3Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, Rochester, New York; and

4. 4Department of Biomedical Engineering, Florida International University, Miami, Florida

Abstract

Object Surgery is an important therapeutic modality for pediatric patients with intractable epilepsy. However, existing imaging and diagnostic technologies such as MR imaging and electrocochleography (ECoG) do not always effectively delineate the true resection margin of an epileptic cortical lesion because of limitations in their sensitivity. Optical spectroscopic techniques such as fluorescence and diffuse reflectance spectroscopy provide a nondestructive means of gauging the physiological features of the brain in vivo, including hemodynamics and metabolism. In this study, the authors investigate the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to assist epilepsy surgery in children. Methods In vivo static fluorescence and diffuse reflectance spectra were acquired from the brain in children undergoing epilepsy surgery. Spectral measurements were obtained using a portable spectroscopic system in conjunction with a fiber optic probe. The optical investigations were conducted at the normal and abnormal cortex as defined by intraoperative ECoG and preoperative imaging studies. Biopsy samples were taken from the investigated sites located within the zone of resection. The optical spectra were classified into multiple subsets in accordance with the ECoG and histological study results. The authors used statistical comparisons between 2 given data subsets to identify unique spectral features. Empirical discrimination algorithms were developed using the identified spectral features to determine if the objective of the study was achieved. Results Fifteen pediatric patients were enrolled in this pilot study. Elevated diffuse reflectance signals between 500 and 600 nm and/or between 650 and 850 nm were observed commonly in the investigated sites with abnormal ECoG and/or histological features in 10 patients. The appearance of a fluorescent peak at 400 nm was observed in both normal and abnormal cortex of 5 patients. These spectral alterations were attributed to changes in morphological and/or biochemical characteristics of the epileptic cortex. The sensitivities and specificities of the empirical discrimination algorithms, which were constructed using the identified spectral features, were all > 90%. Conclusions The results of this study demonstrate the feasibility of using static fluorescence and diffuse reflectance spectroscopy to differentiate normal from abnormal cortex on the basis of intraoperative assessment of ECoG and histological features. It is therefore possible to use fluorescence and diffuse reflectance spectroscopy as an aid in epilepsy surgery.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3