Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial

Author:

Wathen Connor A.1,Frizon Leonardo A.2,Maiti Tanmoy K.3,Baker Kenneth B.4,Machado Andre G.3

Affiliation:

1. Cleveland Clinic Lerner College of Medicine;

2. Center for Neurological Restoration, Neurological Institute, Cleveland Clinic;

3. Department of Neurosurgery, Neurological Institute, Cleveland Clinic; and

4. Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

Abstract

Ischemic stroke is a leading cause of disability worldwide, with profound economic costs. Poststroke motor impairment is the most commonly encountered deficit resulting in significant disability and is the primary driver of stroke-associated healthcare expenditures. Although many patients derive some degree of benefit from physical rehabilitation, a significant proportion continue to suffer from persistent motor impairment. Noninvasive brain stimulation, vagal nerve stimulation, epidural cortical stimulation, and deep brain stimulation (DBS) have all been studied as potential modalities to improve upon the benefits derived from physical therapy alone. These neuromodulatory therapies aim primarily to augment neuroplasticity and drive functional reorganization of the surviving perilesional cortex.The authors have proposed a novel and emerging therapeutic approach based on cerebellar DBS targeted at the dentate nucleus. Their rationale is based on the extensive reciprocal connectivity between the dentate nucleus and wide swaths of cerebral cortex via the dentatothalamocortical and corticopontocerebellar tracts, as well as the known limitations to motor rehabilitation imposed by crossed cerebellar diaschisis. Preclinical studies in rodent models of ischemic stroke have shown that cerebellar DBS promotes functional recovery in a frequency-dependent manner, with the most substantial benefits of the therapy noted at 30-Hz stimulation. The improvements in motor function are paralleled by increased expression of markers of synaptic plasticity, synaptogenesis, and neurogenesis in the perilesional cortex. Given the findings of preclinical studies, a first-in-human trial, Electrical Stimulation of the Dentate Nucleus Area (EDEN) for Improvement of Upper Extremity Hemiparesis Due to Ischemic Stroke: A Safety and Feasibility Study, commenced in 2016. Although the existing preclinical evidence is promising, the results of this Phase I trial and subsequent clinical trials will be necessary to determine the future applicability of this therapy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3