Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model

Author:

Mann Lovepreet K.1,Won Jong H.1,Trenton Nicholaus J.2,Garnett Jeannine1,Snowise Saul1,Fletcher Stephen A.3,Tseng Scheffer C. G.4,Diehl Michael R.2,Papanna Ramesha1

Affiliation:

1. Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth The University of Texas McGovern Medical School and the Fetal Center at Children’s Memorial Hermann Hospital, Houston;

2. Department of Bioengineering, Rice University, Houston;

3. Division of Pediatric Neurosurgery, Department of Pediatrics, and Department of Pediatric Surgery, UTHealth The University of Texas McGovern Medical School, Houston, Texas; and

4. Ocular Surface Center and TissueTech, Inc., Miami, Florida

Abstract

OBJECTIVEDespite significant improvement in spinal cord function after in utero spina bifida (SB) repair compared with traditional postnatal repair, over half of the children who undergo this procedure do not benefit completely. This lack of benefit has been attributed to closure methods of the defect, with subsequent spinal cord tethering at the repair site. Hence, a regenerative patch or material with antiinflammatory and anti-scarring properties may alleviate comorbidities with improved outcomes. The authors’ primary objective was therefore to compare cryopreserved human umbilical cord (HUC) versus acellular dermal matrix (ADM) patches for regenerative repair of in utero SB lesions in an animal model.METHODSIn vivo studies were conducted in retinoic acid–induced SB defects in fetuses of Sprague-Dawley rats. HUC or ADM patches were sutured over the SB defects at a gestational age of 20 days. Repaired SB defect tissues were harvested after 48–52 hours. Tissue sections were immunofluorescently stained for the presence of neutrophils, macrophages, keratinocytes, meningeal cells, and astrocytes and for any associated apoptosis. In vitro meningeal or keratinocyte cell coculture experiments with the ADM and HUC patches were performed. All experiments were scored quantitatively in a blinded manner.RESULTSNeutrophil counts and apoptotic cells were lower in the HUC-based repair group (n = 8) than in the ADM patch repair group (n = 7). In the HUC patch repair group, keratinocytes were present on the outer surface of the patch, meningeal cells were present on the inner surface of the patch adjacent to the neural placode, and astrocytes were noted to be absent. In the ADM patch repair group, all 3 cell types were present on both surfaces of the patch. In vitro studies showed that human meningeal cells grew preferentially on the mesenchymal side of the HUC patch, whereas keratinocytes showed tropism for the epithelial side, suggesting an inherent HUC-based cell polarity. In contrast, the ADM patch studies showed no polarity and decreased cellular infiltration.CONCLUSIONSThe HUC patch demonstrated reduced acute inflammation and apoptosis together with superior organization in regenerative cellular growth when compared with the ADM patch, and is therefore likely the better patch material for in utero SB defect repair. These properties may make the HUC biomaterial useful as a “meningeal patch” during spinal cord surgeries, thereby potentially reducing tethering and improving on spinal cord function.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3