Attenuation of cerebral vasospasm and secondary injury by 17β-estradiol following experimental subarachnoid hemorrhage

Author:

Lin Chih-Lung12,Dumont Aaron S.34,Su Yu-Feng12,Tsai Yee-Jean1,Huang Jih-Hui1,Chang Kao-Ping25,Howng Shen-Long1,Kwan Aij-Lie1,Kassell Neal F.3,Kao Cheng-Hsing67

Affiliation:

1. Department of Neurosurgery;

2. Faculty of Medicine, Graduate Institute of Medicine, College of Medicine;

3. Departments of Neurological Surgery and

4. Radiology, University of Virginia Health System, Charlottesville, Virginia

5. Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung;

6. Center for General Education, Southern Taiwan University of Technology;

7. Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan; and

Abstract

Object Cerebral vasospasm remains a major complication in patients who have suffered a subarachnoid hemorrhage (SAH). Previous studies have shown that 17β-estradiol (E2) attenuates experimental SAH–induced cerebral vasospasm. Moreover, E2 has been shown to reduce neuronal apoptosis and secondary injury following cerebral ischemia. Adenosine A1 receptor (AR-A1) expression is increased following ischemia and may represent an endogenous neuroprotective effect. This study was designed to evaluate the efficacy of E2 in preventing cerebral vasospasm and reducing secondary injury, as evidenced by DNA fragmentation and AR-A1 expression, following SAH. Methods A double-hemorrhage model of SAH in rats was used, and the degree of vasospasm was determined by averaging the cross-sectional areas of the basilar artery 7 days after the first SAH. A cell death assay was used to detect apoptosis. Changes in the protein expression of AR-A1 in the cerebral cortex, hippocampus, and dentate gyrus were compared with levels in normal controls and E2-treated groups (subcutaneous E2, 0.3 mg/ml). Results The administration of E2 prevented vasospasm (p < 0.05). Seven days after the first SAH, DNA fragmentation and protein levels of AR-A1 were significantly increased in the dentate gyrus. The E2 treatment decreased DNA fragmentation and prevented the increase in AR-A1 expression in the dentate gyrus. There were no significant changes in DNA fragmentation and the expression of AR-A1 after SAH in the cerebral cortex and hippocampus in the animals in the control and E2-treated groups. Conclusions The E2 was effective in attenuating SAH-induced cerebral vasospasm, decreasing apoptosis in the dentate gyrus, and reducing the expression of AR-A1 in the dentate gyrus after SAH. Interestingly, E2 appears to effectively prevent cerebral vasospasm subsequent to SAH as well as attenuate secondary injury by reducing both apoptosis and a compensatory increase in AR-A1 expression in the dentate gyrus.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3