Detection of third and sixth cranial nerve palsies with a novel method for eye tracking while watching a short film clip

Author:

Samadani Uzma12,Farooq Sameer2,Ritlop Robert2,Warren Floyd13,Reyes Marleen12,Lamm Elizabeth24,Alex Anastasia3,Nehrbass Elena12,Kolecki Radek2,Jureller Michael2,Schneider Julia2,Chen Agnes2,Shi Chen12,Mendhiratta Neil12,Huang Jason H.5,Qian Meng6,Kwak Roy1,Mikheev Artem7,Rusinek Henry7,George Ajax7,Fergus Robert4,Kondziolka Douglas2,Huang Paul P.2,Smith R. Theodore3

Affiliation:

1. New York Harbor Health Care System, Manhattan Veteran's Administration;

2. Departments of Neurosurgery,

3. Ophthalmology,

4. Department of Computer Science, Courant Institute, New York University, New York, New York; and

5. Department of Neurosurgery, Scott and White Health Care, Temple, Texas

6. Psychiatry, and

7. Radiology, New York University School of Medicine;

Abstract

OBJECT Automated eye movement tracking may provide clues to nervous system function at many levels. Spatial calibration of the eye tracking device requires the subject to have relatively intact ocular motility that implies function of cranial nerves (CNs) III (oculomotor), IV (trochlear), and VI (abducent) and their associated nuclei, along with the multiple regions of the brain imparting cognition and volition. The authors have developed a technique for eye tracking that uses temporal rather than spatial calibration, enabling detection of impaired ability to move the pupil relative to normal (neurologically healthy) control volunteers. This work was performed to demonstrate that this technique may detect CN palsies related to brain compression and to provide insight into how the technique may be of value for evaluating neuropathological conditions associated with CN palsy, such as hydrocephalus or acute mass effect. METHODS The authors recorded subjects' eye movements by using an Eyelink 1000 eye tracker sampling at 500 Hz over 200 seconds while the subject viewed a music video playing inside an aperture on a computer monitor. The aperture moved in a rectangular pattern over a fixed time period. This technique was used to assess ocular motility in 157 neurologically healthy control subjects and 12 patients with either clinical CN III or VI palsy confirmed by neuro-ophthalmological examination, or surgically treatable pathological conditions potentially impacting these nerves. The authors compared the ratio of vertical to horizontal eye movement (height/width defined as aspect ratio) in normal and test subjects. RESULTS In 157 normal controls, the aspect ratio (height/width) for the left eye had a mean value ± SD of 1.0117 ± 0.0706. For the right eye, the aspect ratio had a mean of 1.0077 ± 0.0679 in these 157 subjects. There was no difference between sexes or ages. A patient with known CN VI palsy had a significantly increased aspect ratio (1.39), whereas 2 patients with known CN III palsy had significantly decreased ratios of 0.19 and 0.06, respectively. Three patients with surgically treatable pathological conditions impacting CN VI, such as infratentorial mass effect or hydrocephalus, had significantly increased ratios (1.84, 1.44, and 1.34, respectively) relative to normal controls, and 6 patients with supratentorial mass effect had significantly decreased ratios (0.27, 0.53, 0.62, 0.45, 0.49, and 0.41, respectively). These alterations in eye tracking all reverted to normal ranges after surgical treatment of underlying pathological conditions in these 9 neurosurgical cases. CONCLUSIONS This proof of concept series of cases suggests that the use of eye tracking to detect CN palsy while the patient watches television or its equivalent represents a new capacity for this technology. It may provide a new tool for the assessment of multiple CNS functions that can potentially be useful in the assessment of awake patients with elevated intracranial pressure from hydrocephalus or trauma.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3