Retinotopic organization of the visual cortex before and after decompression of the optic chiasm in a patient with pituitary macroadenoma

Author:

Chouinard Philippe A.1,Striemer Christopher L.12,Ryu Won Hyung A.3,Sperandio Irene1,Goodale Melvyn A.1,Nicolle David A.4,Rotenberg Brian5,Duggal Neil3

Affiliation:

1. Department of Psychology, Brain and Mind Institute, University of Western Ontario;

2. Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada

3. Departments of Clinical Neurological Sciences and

4. Ophthalmology, London Health Sciences Centre; and

5. Department of Otolaryngology, St. Joseph's Health Care London, London, Ontario; and

Abstract

Compression induced by a pituitary tumor on the optic chiasm can generate visual field deficits, yet it is unknown how this compression affects the retinotopic organization of the visual cortex. It is also not known how the effect of the tumor on the retinotopic organization of the visual cortex changes after decompression. The authors used functional MRI (fMRI) to map the retinotopic organization of the visual cortex in a 68-year-old right-handed woman before and 3 months after surgery for a recurrent pituitary macroadenoma. The authors demonstrated that longitudinal changes in visual field perimetry, as assessed by the automated Humphrey visual field test, correlated with longitudinal changes in fMRI activation in a retinotopic manner. In other words, after decompression of the optic chiasm, fMRI charted the recruitment of the visual cortex in a way that matched gains in visual field perimetry. On the basis of this case, the authors propose that fMRI can chart neural plasticity of the visual cortex on an individual basis and that it can also serve as a complementary tool in decision making with respect to management of patients with chiasmal compression.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3