Magnetic field interactions in adjustable hydrocephalus shunts

Author:

Lavinio Andrea12,Harding Sally3,Van Der Boogaard Floor1,Czosnyka Marek14,Smielewski Peter1,Richards Hugh K.1,Pickard John D.13,Czosnyka Zofia H.14

Affiliation:

1. Neurosurgery Unit, Department of Clinical Neurosciences;

2. Institute of Anaesthesiology and Intensive Care Medicine, University of Brescia, Italy

3. Wolfson Brain Imaging Centre, University of Cambridge, United Kingdom; and

4. United Kingdom Shunt Evaluation Laboratory,

Abstract

Object Exposing patients with ventricular shunts to magnetic fields and MR imaging procedures poses a significant risk of unintentional changes in shunt settings. Shunt valves can also generate considerable imaging artifacts. The purpose of this study was to determine the magnetic field safety and MR imaging compatibility of 5 adjustable models of hydrocephalus shunts. Methods The Codman Hakim (regular and with SiphonGuard), Miethke ProGAV, Medtronic Strata, Sophysa Sophy and Polaris programmable valves were tested in a low-intensity magnetic field, and then translational attraction (TA), magnetic torque (MT), and volume of artifacts on T1-weighted spin echo (SE) and gradient echo (GE) pulse sequences in a 3-T MR imaging unit were measured. Results The ProGAV and Polaris valves were immune to unintentional reprogramming by magnetic fields up to 3 T. Other valves randomly changed settings, starting from the intensity of field: Sophy valve 24 mT, Strata valve 30 mT, and both Codman Hakim programmable valves from 42 mT. Shunt performances in the 3-T MR imaging unit are reported in the order of compatibility: 1) Codman Hakim regular, TA = 0.005 N, MT = 0.000 Nm, GE = 30 cm3, SE = 2 cm3; 2) Miethke ProGAV, TA = 0.001 N, MT = 1.4 × 10−3 Nm, GE = 231 cm3, SE = 13 cm3; 3) Codman Hakim with SiphonGuard, TA = 0.005 N, MT = 2.3 × 10−3 Nm, GE = 233 cm3, SE = 19 cm3; 4) Medtronic Strata, TA = 0.27 N, MT = 18.0 × 10−3 Nm, GE = 484 cm3, SE = 86 cm3; 5) Sophysa Sophy, TA = 0.82 N, MT = 38.9 × 10−3 Nm, GE = 758 cm3, SE = 72 cm3; and 6) Sophysa Polaris, TA = 0.80 N, MT = 39.6 × 10−3 Nm, GE = 954 cm3, SE = 100 cm3. Conclusions All valves, with the exception of the Polaris and ProGAV models, are prone to unintentional reprogramming when exposed to heterogeneous magnetic fields stronger than 40 mT. All tested valves can be considered safe for 3-T MR imaging. All valves generated a distortion of the MR image, especially the GE sequences.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3