Toward improving the therapeutic ratio in stereotactic radiosurgery: selective modulation of the radiation responses of both normal tissues and tumor

Author:

Hopewell John W.1,Millar William T.2,Ang K. Kian3

Affiliation:

1. Department of Clinical Oncology, Research Institute, The Churchill Hospital, Oxford;

2. Department of Radiation Oncology, Beatson Laboratories, University of Glasgow, United Kingdom; and

3. Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas

Abstract

✓A review of the radiobiological factors that influence the response of the brain to radiation is provided in relation to stereotactic radiosurgery (SRS). The prospects for intervention after radiation treatment to selectively modulate the expression of late central nervous system (CNS) injury is considered, as well as an account of recent interest in the use of radiation enhancers to selectively increase the response of tumors to radiation. Brain necrosis in humans, after conventional irradiation, indicates that the risk of necrosis increases rapidly after an equivalent single dose of 12 or 13 Gy. When single-dose treatments are extended due to 60Co decay or planned extension of treatment times, account should be taken of the effects of the repair of sublethal radiation damage to DNA on the efficacy of treatment. Both repair capacity and repair kinetics will also influence tumor control, but parameters to quantify this effect have not yet been established. The volume of CNS tissue that has been irradiated affects the tissue response, but this effect is only significant for volumes less than 0.05 cm3. The gain obtained from irradiation of small volumes is reduced, however, when focal irradiation is given within a wider field of irradiation. Based on a vascular hypothesis explaining the pathogenesis of late CNS damage, approaches designed to selectively modulate the frequency of late CNS damage have been validated. Given the high intrinsic radioresistance of some tumors, as opposed to the presence of hypoxia, an interest has developed in the use of selective radiation enhancers in the treatment of tumors. The compound presently available has proved to be disappointing clinically due to toxicity at effective doses, when repeated administration is required. However, when given at high single doses it is less toxic and may be more effective. Less toxic radiation enhancers need to be developed.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3