Comparative analysis of endoscopic third ventriculostomy trajectories in pediatric cases

Author:

Zador Zsolt12,Coope David J.132,Kamaly-Asl Ian D.1

Affiliation:

1. Department of Pediatric Neurosurgery, Royal Manchester Children’s Hospital, Manchester;

2. Department of Neurosurgery, Greater Manchester Neuroscience Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom

3. Wolfson Molecular Imaging Centre, The University of Manchester, Manchester; and

Abstract

OBJECT Endoscopic third ventriculostomy (ETV) has become a widely used method for CSF diversion when treating obstructive hydrocephalus. There are multiple recommendations on the transcortical ETV entry points, and some are specifically designed to provide a trajectory that avoids displacement to the eloquent periventricular structures. However, the morphology of the ventricular system is highly variable in hydrocephalus, and therefore a single best ETV trajectory may not be applicable to all cases. In the current study, 3 frequently quoted ETV entry points are compared in a cohort of pediatric cases with different degrees of ventriculomegaly. METHODS The images of 30 consecutive pediatric patients with varying degrees of ventriculomegaly were reviewed. Three-dimensional models were created using radiological analysis of anatomical detail and preoperative MRI scans in order to simulate 3 frequently quoted ETV trajectories for rigid neuroendoscopes. These trajectories were characterized based on the frequency and depth of tissue displacement to structures such as the fornix, caudate nucleus, genu of the internal capsule, and thalamus. The results are stratified based on ventricle size using the frontal horn ratio (FHR). RESULTS Eloquent areas were displaced in nearly all analyzed entry points (97%–100%). Stratifying the data based on ventricle size revealed that 1) lateral structures were more likely to be displaced in cases of intermediate ventriculomegaly (FHR < 0.4) using all 3 trajectories, whereas 2) the fornix was less likely to be displaced using more posteriorly placed trajectories for severe ventriculomegaly (FHR > 0.4). Allowing for minimal (2.4 mm) tissue displacement, a more posterior entry point was less traumatic for severe ventriculomegaly. CONCLUSIONS There is no single best ETV trajectory that fully avoids displacement of the eloquent periventricular structures. Larger ventricles require a more posteriorly placed entry point in order to reduce injury to the eloquent structures, and intermediate ventricles would dictate a medial entry point. These results suggest that the optimal entry point should be selected on a case-by-case basis after incorporating ventricle size.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3