The dysmorphic cervical spine in Klippel-Feil syndrome: interpretations from developmental biology

Author:

David Karoly M.,Thorogood Peter V.,Stevens John M.,Crockard H. Alan

Abstract

The authors conducted a study to identify radiological patterns of Klippel-Feil syndrome (KFS), and they present a new interpretation of the origin of these patterns based on recent advances in understanding of embryonic development of the spine and its molecular genetic control. The authors studied radiographs and computerized tomography (CT) scans as well as magnetic resonance images or CT myelograms obtained in 30 patients with KFS who were referred for treatment between 1982 and 1996; the patients had complained of various neuroorthopedic complications. Homeotic transformation due to mutations or disturbed expression of Hox genes is a possible mechanism responsible for C-1 assimilation, which was found to have occurred in 19 cases (63%). Notochordal defects and/or signaling problems, which result in reduced or impaired Pax-1 gene expression, may underlie vertebral fusions. This, together with asymmetrical distribution of paraxial mesoderm cells and a possible lack of communication across the embryonic midline, could cause asymmetrical fusion patterns, which were present in 17 cases (57%). The wide and flattened shape of the fused vertebral bodies and their resemblance to the embryonic cartilaginous vertebrae as well as the process of progressive bone fusion with age suggest that the fusions occur before or, at the latest, during chondrification of vertebrae. The authors suggest that the aforementioned mechanisms are likely to be, at least in part, responsible for the observed patterns in KFS that affect the craniovertebral junction and the cervical spine.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3