Author:
David Karoly M.,Thorogood Peter V.,Stevens John M.,Crockard H. Alan
Abstract
The authors conducted a study to identify radiological patterns of Klippel-Feil syndrome (KFS), and they present a new interpretation of the origin of these patterns based on recent advances in understanding of embryonic development of the spine and its molecular genetic control.
The authors studied radiographs and computerized tomography (CT) scans as well as magnetic resonance images or CT myelograms obtained in 30 patients with KFS who were referred for treatment between 1982 and 1996; the patients had complained of various neuroorthopedic complications. Homeotic transformation due to mutations or disturbed expression of Hox genes is a possible mechanism responsible for C-1 assimilation, which was found to have occurred in 19 cases (63%). Notochordal defects and/or signaling problems, which result in reduced or impaired Pax-1 gene expression, may underlie vertebral fusions. This, together with asymmetrical distribution of paraxial mesoderm cells and a possible lack of communication across the embryonic midline, could cause asymmetrical fusion patterns, which were present in 17 cases (57%). The wide and flattened shape of the fused vertebral bodies and their resemblance to the embryonic cartilaginous vertebrae as well as the process of progressive bone fusion with age suggest that the fusions occur before or, at the latest, during chondrification of vertebrae.
The authors suggest that the aforementioned mechanisms are likely to be, at least in part, responsible for the observed patterns in KFS that affect the craniovertebral junction and the cervical spine.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献