Error analysis for a free-hand three-dimensional ultrasound system for neuronavigation

Author:

Hartov Alexander,Eisner Symma D.,David ,Roberts W.,Paulsen Keith D.,Platenik Leah A.,Miga Michael I.

Abstract

Image-guided neurosurgery that is directed by a preoperative imaging study, such as magnetic resonance (MR) imaging or computerized tomography (CT) scanning, can be very accurate provided no significant changes occur during surgery. A variety of factors known to affect brain tissue movement are not reflected in the preoperative images used for guidance. To update the information on which neuronavigation is based, the authors propose the use of three-dimensional (3-D) ultrasound images in conjunction with a finite-element computational model of the deformation of the brain. The 3-D ultrasound system will provide real-time information on the displacement of deep structures to guide the mathematical model. This paper has two goals: first, to present an outline of steps necessary to compute the location of a feature appearing in an ultrasound image in an arbitrary coordinate system; and second, to present an extensive evaluation of this system's accuracy. The authors have found that by using a stylus rigidly coupled to the 3-D tracker's sensor, they were able to locate a point with an overall error of 1.36 ± 1.67 mm (based on 39 points). When coupling the tracker to an ultrasound scanhead, they found that they could locate features appearing on ultrasound images with an error of 2.96 ± 1.85 mm (total 58 features). They also found that when registering a skull phantom to coordinates that were defined by MR imaging or CT scanning, they could do so with an error of 0.86 ± 0.61 mm (based on 20 coordinates). Based on their previous finding of brain shifts on the order of 1 cm during surgery, the accuracy of their system warrants its use in updating neuronavigation imaging data.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3