Biomechanical study of rod stress in lumbopelvic fixation with lateral interbody fusion: an in vitro experimental study using synthetic bone models

Author:

Tsutsui Shunji1,Yamamoto Ei2,Kozaki Takuhei1,Murata Akimasa1,Yamada Hiroshi1

Affiliation:

1. Department of Orthopaedic Surgery, Wakayama Medical University; and

2. Department of Biomedical Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan

Abstract

OBJECTIVE Despite improvements in surgical techniques and instruments, high rates of rod fracture following a long spinal fusion in the treatment of adult spinal deformity (ASD) remain a concern. Thus, an improved understanding of rod fracture may be valuable for better surgical planning. The authors aimed to investigate mechanical stress on posterior rods in lumbopelvic fixation for the treatment of ASD. METHODS Synthetic lumbopelvic bone models were instrumented with intervertebral cages, pedicle screws, S2-alar-iliac screws, and rods. The construct was then placed in a testing device, and compressive loads were applied. Subsequently, the strain on the rods was measured using strain gauges on the dorsal aspect of each rod. RESULTS When the models were instrumented using titanium alloy rods at 30° lumbar lordosis and with lateral interbody fusion cages, posterior rod strain was highest at the lowest segment (L5–S1) and significantly higher than that at the upper segment (L2–3) (p = 0.002). Changing the rod contour from 30° to 50° caused a 36% increase in strain at L5–S1 (p = 0.009). Changing the rod material from titanium alloy to cobalt-chromium caused a 140% increase in strain at L2–3 (p = 0.009) and a 28% decrease in strain at L5–S1 (p = 0.016). The rod strain at L5–S1 using a flat bender for contouring was 23% less than that obtained using a French bender (p = 0.016). CONCLUSIONS In lumbopelvic fixation in which currently available surgical techniques for ASD are used, the posterior rod strain was highest at the lumbosacral junction, and depended on the contour and material of the rods.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3