Flow patterns and velocity distributions in the human vertebrobasilar arterial system

Author:

Kobayashi Nobuaki1,Karino Takeshi2

Affiliation:

1. Department of Neurosurgery, Sapporo Kita Neurosurgical Clinic; and

2. Laboratory of Biofluid Dynamics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan

Abstract

Object The authors conducted a study to elucidate the relationship between the flow patterns and the formation of aneurysms at the bifurcation of the basilar artery (BA). Methods Six isolated, transparent vertebrobasilar arterial systems were prepared from humans postmortem, and flow patterns and velocity distributions were studied in detail using flow visualization and cinemicrographic techniques. Results The authors found that if the diameters of 2 vertebral arteries (VAs) were nearly equal and they formed a symmetrical inverted Y-shaped junction with the BA, the BA flow was also symmetrical. The fluid elements that flowed into the BA from 2 VAs traveled almost parallel to the vessel wall of the BA without mixing with each other, and then they flowed out through ipsilateral superior cerebellar and posterior cerebral arteries. In contrast to this, if the diameters of 2 VAs were very different or the BA was badly bent, the BA flow was disturbed as a result of the formation of swirling and secondary flows. The approaching velocity profile at the BA's terminal bifurcation was flattened if the inverted Y-junction was symmetrical, and it was sharpened if the junction was asymmetrical. Thus, in the latter case, fluid elements impinged on the vessel wall around the flow divider of the bifurcation with much larger velocities and, hence, larger kinetic energy, compared with the case of a symmetrical inverted Y-junction, exerting high fluid pressures, wall shear stresses, and wall tensions on the vessel wall there. Conclusions The symmetrical structure of the inverted Y-junction in a normal vertebrobasilar arterial system provides a flattened approaching velocity profile at the terminal bifurcation of the BA, lowering the hemodynamic stresses (pressure, tension, and shear stress) exerted on the wall of the bifurcation. This may account for the relatively low incidence of aneurysm formation at this site.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3