Role of nitric oxide in traumatic brain injury in the rat

Author:

Wada Kojiro,Chatzipanteli Katina,Busto Raul,Dietrich W. Dalton

Abstract

Object. Although nitric oxide (NO) has been shown to play an important role in the pathophysiological process of cerebral ischemia, its contribution to the pathogenesis of traumatic brain injury (TBI) remains to be clarified. The authors investigated alterations in constitutive nitric oxide synthase (NOS) activity after TBI and the histopathological response to pharmacological manipulations of NO. Methods. Male Sprague—Dawley rats underwent moderate (1.7–2.2 atm) parasagittal fluid-percussion brain injury. Constitutive NOS activity significantly increased within the ipsilateral parietal cerebral cortex, which is the site of histopathological vulnerability, 5 minutes after TBI occurred (234.5 ± 60.2% of contralateral value [mean ± standard error of the mean {SEM}], p < 0.05), returned to control values by 30 minutes (114.1 ± 17.4%), and was reduced at 1 day after TBI (50.5 ± 13.1%, p < 0.01). The reduction in constitutive NOS activity remained for up to 7 days after TBI (31.8 ± 6.0% at 3 days, p < 0.05; 20.1 ± 12.7% at 7 days, p < 0.01). Pretreatment with 3-bromo-7-nitroindazole (7-NI ) (25 mg/kg), a relatively specific inhibitor of neuronal NOS, significantly decreased contusion volume (1.27 ± 0.17 mm3 [mean ± SEM], p < 0.05) compared with that of control (2.52 ± 0.35 mm3). However, posttreatment with 7-NI or pre- or posttreatment with nitro-l-arginine-methyl ester (l-NAME) (15 mg/kg), a nonspecific inhibitor of NOS, did not affect the contusion volume compared with that of control animals (1.87 ± 0.46 mm3, 2.13 ± 0.43 mm3, and 2.18 ± 0.53 mm3, respectively). Posttreatment with l-arginine (1.1 ± 0.3 mm3, p < 0.05), but not 3-morpholino-sydnonimine (SIN-1) (2.48 ± 0.37 mm3), significantly reduced the contusion volume compared with that of control animals. Conclusions. These data indicate that constitutive NOS activity is affected after moderate parasagittal fluid percussion brain injury in a time-dependent manner. Inhibition of activated neuronal NOS and/or enhanced endothelial NOS activation may represent a potential therapeutic strategy for the treatment of TBI.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3