Waterjet dissection of the brain: experimental and first clinical results

Author:

Piek Jürgen,Wille Christian,Warzok Rolf,Gaab Michael-Robert

Abstract

✓ Control of bleeding during dissection is a problem that is still not completely resolved in neurosurgical procedures. To overcome this problem in some settings, the authors, in close collaboration with their institution, developed a new device for blunt dissection of brain tumors that is based on a waterjet technique. This report describes their first experimental and clinical experience with this new method. Numerous cutting experiments were performed in porcine cadaver brains. The best results were obtained using pressures from 4 to 6 bars with a 100-jxm tip, which produced very small, precise cuts. Histological evaluation showed no disruption or vacuolization of the surrounding tissue. The authors have used the new device in nine patients (seven with gliomas and two undergoing temporal lobe resections for epilepsy), and no complications have been observed. The waterjet device allowed dissection of the brain tissue while even small exposed vessels were spared injury. The instrument was found to be easy to use. Future investigations will concentrate on adapting this new method to endoscopic surgery and evaluating fluids with low surface tension to avoid foaming and bubbling during open surgery.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3