Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients

Author:

Cecil Kim M.,Hills Everett C.,Sandel M. Elizabeth,Smith Douglas H.,McIntosh Tracy K.,Mannon Lois J.,Sinson Grant P.,Bagley Linda J.,Grossman Robert I.,Lenkinski Robert E.

Abstract

Object. This study was conducted to determine whether proton magnetic resonance spectroscopy (MRS) is a sensitive method for detecting diffuse axonal injury, which is a primary sequela of traumatic brain injury (TBI). Diffuse axonal injury is characterized by selective damage to white matter tracts that is caused in part by the severe inertial strain created by rotational acceleration and deceleration, which is often associated with motor vehicle accidents. This axonal injury is typically difficult to detect by using conventional imaging techniques because it is microscopic in nature. The splenium was selected because it is a site vulnerable to shearing forces that produce diffuse axonal injury. Methods. The authors used proton MRS to evaluate the splenium, the posterior commissure of the corpus callosum, in normal control volunteers and in patients with TBI. Proton MRS provided an index of neuronal and axonal viability by measuring levels of N-acetyl aspartate (NAA). Conclusions. A majority of mildly brain injured patients, as well as those more severely injured, showed diminished NAA/creatine (Cr) levels in the splenium compared with normal control volunteers. The patients displaying lowered NAA/Cr in the splenium were also likely to exhibit lowered NAA/Cr in lobar white matter. Also, the levels of NAA/Cr in the splenium of normal volunteers were higher compared with those found in lobar white matter. Decreases in NAA/Cr levels in the splenium may be a marker for diffuse injury. A proton MRS examination may be particularly useful in evaluating mildly injured patients with unexplained neurological and cognitive deficits. It is concluded that MRS is a sensitive tool in detecting axonal injury.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3