Correlation of intrinsic optical signal, cerebral blood flow, and evoked potentials during activation of rat somatosensory cortex

Author:

Haglund Michael M.1,Meno Joseph R.2,Hochman Daryl W.1,Ngai Al C.2,Winn H. Richard3

Affiliation:

1. Department of Neurological Surgery, Duke University, Durham, North Carolina;

2. University of Washington School of Medicine, Seattle, Washington; and

3. Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York

Abstract

Object This study was undertaken to test the hypothesis that cerebral blood flow (CBF) and the intrinsic optical signal could be dissociated by altering adenosine receptor activity and to uncover the origin of the optic signal using a cranial window in the anesthetized rat. Methods In anesthetized, ventilated, and temperature-controlled rats with closed cranial windows, the authors evaluated simultaneously the alterations in pial arteriolar diameter, intrinsic optical signals (690 nm), and somatosensory evoked potentials during cortical activation evoked by contralateral sciatic nerve stimulation (SNS). To dissociate the vascular and intrinsic signal, they topically applied the adenosine receptors antagonists theophylline (5 μM), which affects A1 and A2A receptors, and 8-cyclopentyl-1,3-dipropylxanthine (CPX, 1 μM), which blocks the A1 receptor. The former interacts primarily with the vasculature whereas the latter influences the parenchyma exclusively. Results During 20 seconds of contralateral SNS, pial arterioles in the hindlimb somatosensory cortex dilated in a characteristic peak and shoulder pattern. As compared with mock cerebrospinal fluid alone, theophylline significantly (p < 0.05) attenuated SNS-induced vasodilation (mean ± standard deviation 8.1 ± 2.5% vs 21.7 ± 1.9%; 4 rats in each group). In contrast, CPX potentiated vasodilation significantly (p < 0.05) during SNS (54.7 ± 15.8% for the CPX group vs 20.1 ± 1.9% for the controls; 5 rats in each group). The change in optical signal persisted after cessation of SNS in all the animals. Thus, the pattern of change of the optical signal was distinctly different from the pattern of changes in arteriolar diameter (which returned rapidly to baseline). Moreover, the optical signal during SNS was increased by 50% by theophylline and by almost 5-fold by CPX (p < 0.05). The area of change of the intrinsic signal was also increased by the topical application of theophylline and CPX. The somatosensory evoked potential recordings revealed no significant changes after theophylline application, but CPX caused a small diminution of the N1 wave (p < 0.01). Conclusions The noncongruent temporal profiles of the changes in pial arteriolar diameter and optical signal, imaged at 690 nm, indicate that the optical signal at 690 nm is not related to CBF. Alteration of adenosine receptor activity independently changed cortical activity, as measured by the optical signal, and CBF, as determined by pial arteriolar diameter. Manipulation of the adenosine receptor activity during increased cortical activity confirmed the temporal dissociation of optical signal and CBF and provided further evidence for the role of adenosine in regulating CBF.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3