Affiliation:
1. Department of Neurological Surgery, Duke University, Durham, North Carolina;
2. University of Washington School of Medicine, Seattle, Washington; and
3. Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York
Abstract
Object
This study was undertaken to test the hypothesis that cerebral blood flow (CBF) and the intrinsic optical signal could be dissociated by altering adenosine receptor activity and to uncover the origin of the optic signal using a cranial window in the anesthetized rat.
Methods
In anesthetized, ventilated, and temperature-controlled rats with closed cranial windows, the authors evaluated simultaneously the alterations in pial arteriolar diameter, intrinsic optical signals (690 nm), and somatosensory evoked potentials during cortical activation evoked by contralateral sciatic nerve stimulation (SNS). To dissociate the vascular and intrinsic signal, they topically applied the adenosine receptors antagonists theophylline (5 μM), which affects A1 and A2A receptors, and 8-cyclopentyl-1,3-dipropylxanthine (CPX, 1 μM), which blocks the A1 receptor. The former interacts primarily with the vasculature whereas the latter influences the parenchyma exclusively.
Results
During 20 seconds of contralateral SNS, pial arterioles in the hindlimb somatosensory cortex dilated in a characteristic peak and shoulder pattern. As compared with mock cerebrospinal fluid alone, theophylline significantly (p < 0.05) attenuated SNS-induced vasodilation (mean ± standard deviation 8.1 ± 2.5% vs 21.7 ± 1.9%; 4 rats in each group). In contrast, CPX potentiated vasodilation significantly (p < 0.05) during SNS (54.7 ± 15.8% for the CPX group vs 20.1 ± 1.9% for the controls; 5 rats in each group).
The change in optical signal persisted after cessation of SNS in all the animals. Thus, the pattern of change of the optical signal was distinctly different from the pattern of changes in arteriolar diameter (which returned rapidly to baseline). Moreover, the optical signal during SNS was increased by 50% by theophylline and by almost 5-fold by CPX (p < 0.05). The area of change of the intrinsic signal was also increased by the topical application of theophylline and CPX.
The somatosensory evoked potential recordings revealed no significant changes after theophylline application, but CPX caused a small diminution of the N1 wave (p < 0.01).
Conclusions
The noncongruent temporal profiles of the changes in pial arteriolar diameter and optical signal, imaged at 690 nm, indicate that the optical signal at 690 nm is not related to CBF. Alteration of adenosine receptor activity independently changed cortical activity, as measured by the optical signal, and CBF, as determined by pial arteriolar diameter. Manipulation of the adenosine receptor activity during increased cortical activity confirmed the temporal dissociation of optical signal and CBF and provided further evidence for the role of adenosine in regulating CBF.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献