Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey

Author:

Laćan Goran1,De Salles Antonio A. F.23,Gorgulho Alessandra A.2,Krahl Scott E.23,Frighetto Leonardo2,Behnke Eric J.2,Melega William P.1

Affiliation:

1. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA and

2. Division of Neurosurgery, Department of Surgery;

3. VA Greater Los Angeles Healthcare System, Los Angeles, California

Abstract

Object Deep brain stimulation (DBS) has become an effective therapy for an increasing number of brain disorders. Recently demonstrated DBS of the posterior hypothalamus as a safe treatment for chronic intractable cluster headaches has drawn attention to this target, which is involved in the regulation of diverse autonomic functions and feeding behavior through complex integrative mechanisms. In this study, the authors assessed the feasibility of ventromedial hypothalamus (VMH) DBS in freely moving vervet monkeys to modulate food intake as a model for the potential treatment of eating disorders. Methods Deep brain stimulation electrodes were bilaterally implanted into the VMH of 2 adult male vervet monkeys by using the stereotactic techniques utilized in DBS in humans. Stimulators were implanted subcutaneously on the upper back, allowing ready access to program stimulation parameters while the animal remained conscious and freely moving. In anesthetized animals, intraoperatively and 6–10 weeks postsurgery, VMH DBS parameters were selected according to minimal cardiovascular and autonomic nervous system responses. Thereafter, conscious animals were subjected to 2 cycles of VMH DBS for periods of 8 and 3 days, and food intake and behavior were monitored. Animals were then killed for histological verification of probe placement. Results During VMH DBS, total food consumption increased. The 3-month bilateral implant of electrodes and subsequent periods of high-frequency VMH stimulation did not result in significant adverse behavioral effects. Conclusions This is the first study in which techniques of hypothalamic DBS in humans have been applied in freely moving nonhuman primates. Future studies can now be conducted to determine whether VMH DBS can change hypothalamic responsivity to endocrine signals associated with adiposity for long-term modulation of food intake.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3