Objective assessment of postural ergonomics in neurosurgery: integrating wearable technology in the operating room

Author:

Zulbaran-Rojas Alejandro1,Rouzi Mohammad D.1,Zahiri Mohsen1,Ouattas Abderrahman1,Walter Christina M.2,Nguyen Hung1,Bidadi Sanam1,Najafi Bijan1,Lemole G. Michael2

Affiliation:

1. Interdisciplinary Consortium on Ambulatory Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; and

2. Division of Neurosurgery, Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona

Abstract

OBJECTIVE Physical stress associated with the static posture of neurosurgeons over prolonged periods can result in fatigue and musculoskeletal disorders. Objective assessment of surgical ergonomics may contribute to postural awareness and prevent further complications. This pilot study examined the feasibility of using wearable technology as a biofeedback tool to address this gap. METHODS Ten neurosurgeons, including 5 attendings (all faculty) and 5 trainees (1 fellow, 4 residents), were recruited and equipped with two wearable sensors attached to the back of their head and their upper back. The sensors collected the average time spent in extended (≤ −10°), neutral (> −10° and < 10°), and flexed (≥ 10°) static postures (undetected activity for more than 10 seconds) during spine and cranial procedures. Feasibility outcomes aimed for more than 70% of accurate data collection. Exploratory outcomes included the comparison of postural variability within and between participants adjusted to their demographics excluding nonrelated surgical activities, and postoperative self-assessment surveys. RESULTS Sixteen (80%) of 20 possible recordings were successfully collected and analyzed from 11 procedures (8 spine, 3 cranial). Surgeons maintained a static posture during 52.7% of the active surgical time (mean 1.58 hrs). During spine procedures, all surgeons used an exoscope while standing, leading to a significantly longer time spent in a neutral static posture (p < 0.001, partial η2 = 0.14): attendings remained longer in a neutral static posture (36.4% ± 15.3%) than in the extended (9% ± 6.3%) and flexed (5.7% ± 3.4%) static postures; trainees also remained longer in a neutral static posture (30.2% ± 13.8%) than in the extended (11.1% ± 6.3%) and flexed (11.9% ± 6.6%) static postures. During cranial procedures, surgeons intermittently transitioned between standing/exoscope use and sitting/microscope use, with trainees spending a shorter time in a neutral static posture (16.3% vs 48.5%, p < 0.001) and a longer time in a flexed static posture (18.5% vs 2.7%, p < 0.001) compared with attendings. Additionally, longer cranial procedures correlated with surgeons spending a longer time (r = 0.94) in any static posture (extended, flexed, and neutral), with taller surgeons exhibiting longer periods in flexed and extended static postures (r = 0.86). Postoperative self-assessment revealed that attendings perceived spine procedures as more difficult than trainees (p = 0.029), while trainees found cranial procedures to be of greater difficulty than spine procedures (p = 0.012). Attendings felt more stressed (p = 0.048), less calmed (p = 0.024), less relaxed (p = 0.048), and experienced greater stiffness in their upper body (p = 0.048) and more shoulder pain (p = 0.024) during cranial versus spine procedures. CONCLUSIONS Wearable technology is feasible to assess postural ergonomics and provide objective biofeedback to neurosurgeons during spine and cranial procedures. This study showed reproducibility for future comparative protocols focused on correcting posture and surgical ergonomic education.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Reference45 articles.

1. Postural ergonomics and work-related musculoskeletal disorders in neurosurgery: lessons from an international survey;Mavrovounis G,2021

2. Neurological surgery: the influence of physical and mental demands on humans performing complex operations;Bourne SK,2013

3. Ergonomics and musculoskeletal disorders in neurosurgery: a systematic review;Lavé A,2020

4. Postural ergonomics and micro-neurosurgery: microscope has an edge over loupes;Demetriades AK,2020

5. Musculoskeletal disorders among spine surgeons: results of a survey of the Scoliosis Research Society membership;Auerbach JD,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3