A minimally invasive catheter-based ultrasound technology for therapeutic interventions in brain: initial preclinical studies

Author:

Ghoshal Goutam1,Gee Lucy23,Heffter Tamas1,Williams Emery1,Bromfield Corinne4,Rund Laurie4,Ehrhardt John M.4,Diederich Chris J.5,Fischer Gregory S.6,Pilitsis Julie G.23,Burdette E. Clif1

Affiliation:

1. Acoustic MedSystems, Inc., Savoy, Illinois;

2. Departments of Neuroscience and Experimental Therapeutics and

3. Neurosurgery, Albany Medical Center, Albany, New York;

4. Department of Animal Sciences, University of Illinois, Urbana, Illinois;

5. Department of Radiation Oncology, University of California, San Francisco, California; and

6. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts

Abstract

OBJECTIVEMinimally invasive procedures may allow surgeons to avoid conventional open surgical procedures for certain neurological disorders. This paper describes the iterative process for development of a catheter-based ultrasound thermal therapy applicator.METHODSUsing an ultrasound applicator with an array of longitudinally stacked and angularly sectored tubular transducers within a catheter, the authors conducted experimental studies in porcine liver, in vivo and ex vivo, in order to characterize the device performance and lesion patterns. In addition, they applied the technique in a rodent model of Parkinson’s disease to investigate the feasibility of its application in brain.RESULTSThermal lesions with multiple shapes and sizes were readily achieved in porcine liver. The feasibility of catheter-based focused ultrasound in the treatment of brain conditions was demonstrated in a rodent model of Parkinson’s disease.CONCLUSIONSThe authors show proof of principle of a catheter-based ultrasound system that can create lesions with concurrent thermode-based measurements.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3