A novel high-precision fiber tractography for nuclear localization in transcranial magnetic resonance–guided focused ultrasound surgery: a pilot study

Author:

Hori Hiroki,Taira Takaomi1,Abe Keiichi1,Hori Tomokatsu

Affiliation:

1. Department of FUS Center, Moriyama Neurosurgical Center Hospital, Tokyo, Japan

Abstract

OBJECTIVE In transcranial MR-guided focused ultrasound (TcMRgFUS), fiber tractography using diffusion tensor imaging (DTI) has been proposed as a direct method to identify the ventral intermediate nucleus (Vim), the ventral caudal nucleus (Vc), and the pyramidal tract (PT). However, the limitations of the DTI algorithm affect the accuracy of visualizing anatomical structures due to its low-quality fiber tractography, whereas the application of the generalized q-sampling imaging (GQI) algorithm enables the visualization of high-quality fiber tracts, offering detailed insights into the spatial distribution of motor cortex fibers. This retrospective study aimed to investigate the usefulness of high-precision fiber tractography using the GQI algorithm as a planning image in TcMRgFUS to achieve favorable clinical outcomes. METHODS This study included 20 patients who underwent TcMRgFUS. The Clinical Rating Scale for Tremor (CRST) scores and MR images were evaluated pretreatment and at 24 hours and 3–6 months after treatment. Cases were classified based on the presence and adversity of adverse events (AEs): no AEs, mild AEs without additional treatment, and severe AEs requiring prolonged hospitalization. Fiber tractography of the Vim, Vc, and PT was visualized using the DTI and GQI algorithm. The overlapping volume between Vim fibers and the lesion was measured, and correlation analysis was performed. The relationship between AEs and the overlapping volume of the Vc and PT fibers within the lesions was examined. The cutoff value to achieve a favorable clinical outcome and avoid AEs was determined using receiver operating characteristic curve analysis. RESULTS All patients showed improvement in tremors 24 hours after treatment, with 3 patients experiencing mild AEs and 1 patient experiencing severe AEs. At the 3- to 6-month follow-up, 5 patients experienced recurrence, and 2 patients had persistent mild AEs. Although fiber visualization in the motor cortex using the DTI algorithm was insufficient, the GQI algorithm enabled the visualization of significantly higher-quality fibers. A strong correlation was observed between the overlapping volume that intersects the lesion and Vim fibers and the degree of tremor improvement (r = 0.72). Higher overlapping volumes of Vc and PT within the lesion were associated with an increased likelihood of AEs (p < 0.05); the cutoff volume of Vim fibers within the lesion for a favorable clinical outcome was 401 mm3, while the volume of Vc and PT within the lesion to avoid AEs was 99 mm3. CONCLUSIONS This pilot study suggests that incorporating the high-precision GQI algorithm for fiber tractography as a planning imaging technique for TcMRgFUS has the potential to enhance targeting precision and achieve favorable clinical outcomes.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference46 articles.

1. A randomized trial of focused ultrasound thalamotomy for essential tremor;Elias WJ,2016

2. Correlation between fractional anisotropy changes in the targeted ventral intermediate nucleus and clinical outcome after transcranial MR-guided focused ultrasound thalamotomy for essential tremor: results of a pilot study;Hori H,2019

3. Magnetic resonance-guided focused ultrasound thalamotomy for focal hand dystonia: a pilot study;Horisawa S,2021

4. A single case of MRI-guided focused ultrasound ventro-oral thalamotomy for musician’s dystonia;Horisawa S,2018

5. Accumulated thermal dose in MRI-guided focused ultrasound for essential tremor: repeated sonications with low focal temperatures;Jones RM,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3