Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation

Author:

Vu Jasmine12,Bhusal Bhumi2,Rosenow Joshua M.3,Pilitsis Julie4,Golestanirad Laleh12

Affiliation:

1. Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois;

2. Departments of Radiology and

3. Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and

4. Department of Neurosciences and Experimental Therapeutics, Albany Medical College, Albany, New York

Abstract

OBJECTIVE Radiofrequency (RF) tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during MRI, resulting in strict imaging guidelines and limited allowable protocols. The implanted lead’s trajectory and orientation with respect to the MRI electric fields contribute to variations in the magnitude of RF heating across patients. Currently, there are no surgical requirements for implanting the extracranial portion of the DBS lead, resulting in substantial variations in clinical lead trajectories and consequently RF heating. Recent studies have shown that incorporating concentric loops in the extracranial lead trajectory can reduce RF heating. However, optimal positioning of the loops and the quantitative benefit of trajectory modification in terms of added safety margins during MRI remain unknown. In this study, the authors systematically evaluated the characteristics of DBS lead trajectories that minimize RF heating during 3T MRI to develop the best surgical practices for safe access to postoperative MRI, and they present the first surgical implementation of these modified trajectories. METHODS The authors performed experiments to assess the maximum temperature increase of 244 distinct lead trajectories. They investigated the effect of the position, number, and size of the concentric loops on the skull. Experiments were performed in an anthropomorphic phantom implanted with a commercial DBS system, and RF exposure was generated by applying a high specific absorption rate sequence (B1+rms = 2.7 µT). The authors conducted test-retest experiments to assess the reliability of measurements. Additionally, they evaluated the effect of imaging landmarks and perturbations to the DBS device configuration on the efficacy of low-heating trajectories. Finally, two neurosurgeons implanted the recommended modified trajectories in patients, and the authors characterized their RF heating in comparison with unmodified trajectories. RESULTS The maximum temperature increase ranged from 0.09°C to 7.34°C. The authors found that increasing the number of loops and positioning them closer to the surgical burr hole, particularly for the contralateral lead, substantially reduced RF heating. These trajectory modifications were easily incorporated during the surgical procedure and resulted in a threefold reduction in RF heating. CONCLUSIONS Surgically modifying the extracranial portion of the DBS lead trajectory can substantially reduce RF heating during 3T MRI. The authors’ results indicate that simple adjustments to the lead’s configuration, such as small, concentric loops near the burr hole, can be readily adopted during DBS lead implantation to improve patient safety during MRI.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference44 articles.

1. Deep brain stimulation for Parkinson’s disease;Benabid AL,2003

2. Deep brain stimulation for essential tremor: a systematic review;Flora ED,2010

3. Deep brain stimulation for dystonia: outcome at long-term follow-up;Loher TJ,2008

4. Deep brain stimulation: current challenges and future directions;Lozano AM,2019

5. Imaging patients pre and post deep brain stimulation: localization of the electrodes and their targets;Li Y,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3