The application of augmented reality–based navigation for accurate target acquisition of deep brain sites: advances in neurosurgical guidance

Author:

Gibby Wendell123,Cvetko Steve2,Gibby Andrew3,Gibby Conrad3,Sorensen Kiel2,Andrews Edward G.4,Maroon Joseph4,Parr Ryan2

Affiliation:

1. Department of Radiology, University of California, San Diego, California;

2. Novarad, American Fork, Utah;

3. Blue Rock Medical, Provo, Utah; and

4. Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

Abstract

OBJECTIVE The objective of this study is to quantify the navigational accuracy of an advanced augmented reality (AR)–based guidance system for neurological surgery, biopsy, and/or other minimally invasive neurological surgical procedures. METHODS Five burr holes were drilled through a plastic cranium, and 5 optical fiducials (AprilTags) printed with CT-visible ink were placed on the frontal, temporal, and parietal bones of a human skull model. Three 0.5-mm-diameter targets were mounted in the interior of the skull on nylon posts near the level of the tentorium cerebelli and the pituitary fossa. The skull was filled with ballistic gelatin to simulate brain tissue. A CT scan was taken and virtual needle tracts were annotated on the preoperative 3D workstation for the combination of 3 targets and 5 access holes (15 target tracts). The resulting annotated study was uploaded to and launched by VisAR software operating on the HoloLens 2 holographic visor by viewing an encrypted, printed QR code assigned to the study by the preoperative workstation. The DICOM images were converted to 3D holograms and registered to the skull by alignment of the holographic fiducials with the AprilTags attached to the skull. Five volunteers, familiar with the VisAR, used the software/visor combination to navigate an 18-gauge needle/trocar through the series of burr holes to the target, resulting in 70 data points (15 for 4 users and 10 for 1 user). After each attempt the needle was left in the skull, supported by the ballistic gelatin, and a high-resolution CT was taken. Radial error and angle of error were determined using vector coordinates. Summary statistics were calculated individually and collectively. RESULTS The combined angle of error of was 2.30° ± 1.28°. The mean radial error for users was 3.62 ± 1.71 mm. The mean target depth was 85.41 mm. CONCLUSIONS The mean radial error and angle of error with the associated variance measures demonstrates that VisAR navigation may have utility for guiding a small needle to neural lesions, or targets within an accuracy of 3.62 mm. These values are sufficiently accurate for the navigation of many neurological procedures such as ventriculostomy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference22 articles.

1. How augmented reality will make surgery safer;Murthi S

2. Brain surgeons get a better view from augmented reality;Toy S

3. About HoloLens 2;Microsoft

4. Augmented reality in neurosurgery: a systematic review;Meola A,2017

5. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique;Besharati Tabrizi L,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3