Affiliation:
1. Departments of Neurosurgery,
2. Oncology,
3. Karmanos Cancer Institute, Wayne State University, Detroit, Michigan;
4. Neurology, and
5. Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York; and
6. Department of Biomedical Engineering, Cornell University, Ithaca, New York
7. Pediatrics,
Abstract
OBJECTIVETreatment for glioblastoma (GBM) remains largely unsuccessful, even with aggressive combined treatment via surgery, radiotherapy, and chemotherapy. Tumor treating fields (TTFs) are low-intensity, intermediate-frequency, alternating electric fields that have antiproliferative properties in vitro and in vivo. The authors provide an up-to-date review of the mechanism of action as well as preclinical and clinical data on TTFs.METHODSA systematic review of the literature was performed using the terms “tumor treating fields,” “alternating electric fields,” “glioblastoma,” “Optune,” “NovoTTF-100A,” and “Novocure.”RESULTSPreclinical and clinical data have demonstrated the potential efficacy of TTFs for treatment of GBM, leading to several pilot studies, clinical trials, and, in 2011, FDA approval for its use as salvage therapy for recurrent GBM and, in 2015, approval for newly diagnosed GBM.CONCLUSIONSCurrent evidence supports the use of TTFs as an efficacious, antimitotic treatment with minimal toxicity in patients with newly diagnosed and recurrent GBM. Additional studies are needed to further optimize patient selection, determine cost-effectiveness, and assess the full impact on quality of life.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献