Fascicular shifting: a novel technique to overcome large nerve defects

Author:

Hader Maria1,Sporer Matthias E.1,Roche Aidan D.1,Unger Ewald2,Bergmeister Konstantin D.1,Wakolbinger Robert1,Aszmann Oskar C.13

Affiliation:

1. Christian Doppler Laboratory for Restoration of Extremity Function;

2. Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria

3. Division of Plastic and Reconstructive Surgery, Department of Surgery; and

Abstract

OBJECTIVEOver the last decade, a number of authors have investigated the utility of different biological and synthetic matrices as alternatives to conventional nerve grafts. However, the autologous nerve graft remains the gold standard, even though it often involves using a pure sensory nerve to reconstruct a mixed or even a pure motor nerve. Furthermore, limited donor sites often necessitate a significant mismatch of needed nerve tissue, especially for large proximal nerve defects such as brachial plexus lesions. Here, the authors present a new technique that overcomes these problems: the fascicular shift procedure (FSP). A fascicular group of the nerve distal to the injury is harvested in a sufficient length to bridge the nerve defect.METHODSThe method of fascicular shifting was tested at the sciatic nerve in 45 Lewis rats. In the experimental group, a 15-mm nerve defect was created and reconstructed with a fascicular group that was harvested directly distal to the gap. This group was compared with 1 negative control group (defect without reconstruction) and 3 positive control groups (sensory, motor, and mixed graft). After 12 weeks of nerve regeneration, outcome was evaluated using retrograde labeling, histomorphometric analysis, and muscle force analysis.RESULTSAll reconstructed groups showed successful regeneration with various levels of function. The negative control group showed minimal force measurements that were of no functional value. The fascicular shift provided sufficient guidance to overcome nerve defects, had higher (p < 0.1) motor neuron counts (1958.75 ± 657.21) than the sensory graft (1263.50 ± 538.90), and was equal to motor grafts (1490.43 ± 794.80) and mixed grafts (1720.00 ± 866.421). This tendency of improved motor regeneration was confirmed in all analyses. The mixed graft group was compared with the experimental group to investigate the influence of the potential damage induced by the fascicular shift distal to the repair site. However, none of the analyses revealed an impairment of nerve regeneration for both the tibial and common peroneal index muscles.CONCLUSIONSThis study demonstrates that harvesting a transplant from the nerve segment distal to the injury site offers a mixed graft without causing additional donor-site morbidity. These grafts perform statistically better than a standard sensory graft in terms of motor recovery. The fascicular shift presents a novel method to reconstruct large proximal nerve defects, making it immensely attractive in brachial plexus reconstruction.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3