Novel rodent model for simulation of sylvian fissure dissection and cerebrovascular bypass under subarachnoid hemorrhage conditions: technical note and timing study

Author:

Perry Avital1,Graffeo Christopher S.1,Carlstrom Lucas P.1,Anding William J.2,Link Michael J.13,Rangel-Castilla Leonardo14

Affiliation:

1. Departments of Neurologic Surgery,

2. Education,

3. Otolaryngology–Head and Neck Surgery, and

4. Radiology, Mayo Clinic, Rochester, Minnesota

Abstract

OBJECTIVESylvian fissure dissection following subarachnoid hemorrhage (SAH) is a challenging but fundamental skill in microneurosurgery, and one that has become increasingly difficult to develop during residency, given the overarching management trends. The authors describe a novel rodent model for simulation of sylvian fissure dissection and cerebrovascular bypass under SAH conditions.METHODSA standardized microvascular anastomosis model comprising rat femoral arteries and veins was used for the experimental framework. In the experimental protocol, following exposure and skeletonization of the vessels, extensive, superficial (1- to 2-mm) soft-tissue debridement was conducted and followed by wound closure and delayed reexploration at intervals of 7, 14, and 28 days. Two residents dissected 1 rat each per time point (n = 6 rats), completing vessel skeletonization followed by end-to-end artery/vein anastomoses. Videos were reviewed postprocedure to assess scar score and relative difficulty of dissection by blinded raters using 4-point Likert scales.RESULTSAt all time points, vessels were markedly invested in friable scar, and exposure was subjectively assessed as a reasonable surrogate for sylvian fissure dissection under SAH conditions. Scar score and relative difficulty of dissection both indicated 14 days as the most challenging time point.CONCLUSIONSThe authors’ experimental model of femoral vessel skeletonization, circumferential superficial soft-tissue injury, and delayed reexploration provides a novel approximation of sylvian fissure dissection and cerebrovascular bypass under SAH conditions. The optimal reexploration interval appears to be 7–14 days. To the authors’ knowledge, this is the first model of SAH simulation for microsurgical training, particularly in a live animal system.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Reference58 articles.

1. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology;Thawani;J Clin Neurosci,2016

2. The role of simulation in neurosurgery;Rehder;Childs Nerv Syst,2016

3. Competency assessment in virtual reality-based simulation in neurosurgical training;McGuire,2018

4. Physical simulators and replicators in endovascular neurosurgery training;Sadasivan,2018

5. Microvascular anastomosis training model based on a Turkey neck with perfused arteries;ColpanME;Neurosurgery,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3