Intraoperative optical imaging of intrinsic signals: a reliable method for visualizing stimulated functional brain areas during surgery

Author:

Sobottka Stephan B.1,Meyer Tobias12,Kirsch Matthias1,Koch Edmund3,Steinmeier Ralf4,Morgenstern Ute2,Schackert Gabriele1

Affiliation:

1. Department of Neurosurgery, University Hospital Carl Gustav Carus;

2. Institute for Biomedical Engineering;

3. Clinical Sensoring and Monitoring, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden; and

4. Department of Neurosurgery, Klinikum Chemnitz gGmbH, Chemnitz, Germany

Abstract

Object Intraoperative optical imaging (IOI) is an experimental technique used for visualizing functional brain areas after surgical exposure of the cerebral cortex. This technique identifies areas of local changes in blood volume and oxygenation caused by stimulation of specific brain functions. The authors describe a new IOI method, including innovative data analysis, that can facilitate intraoperative functional imaging on a routine basis. To evaluate the reliability and validity of this approach, they used the new IOI method to demonstrate visualization of the median nerve area of the somatosensory cortex. Methods In 41 patients with tumor lesions adjacent to the postcentral gyrus, lesions were surgically removed by using IOI during stimulation of the contralateral median nerve. Optical properties of the cortical tissue were measured with a sensitive camera system connected to a surgical microscope. Imaging was performed by using 9 cycles of alternating prolonged stimulation and rest periods of 30 seconds. Intraoperative optical imaging was based on blood volume changes detected by using a filter at an isosbestic wavelength (λ = 568 nm). A spectral analysis algorithm was used to improve computation of the activity maps. Movement artifacts were compensated for by an elastic registration algorithm. For validation, intraoperative conduction of the phase reversal over the central sulcus and postoperative evaluation of the craniotomy site were used. Results The new method and analysis enabled significant differentiation (p < 0.005) between functional and nonfunctional tissue. The identification and visualization of functionally intact somatosensory cortex was highly reliable; sensitivity was 94.4% and specificity was almost 100%. The surgeon was provided with a 2D high-resolution activity map within 12 minutes. No method-related side effects occurred in any of the 41 patients. Conclusions The authors' new approach makes IOI a contact-free and label-free optical technique that can be used safely in a routine clinical setup. Intraoperative optical imaging can be used as an alternative to other methods for the identification of sensory cortex areas and offers the added benefit of a high-resolution map of functional activity. It has great potential for visualizing and monitoring additional specific functional brain areas such as the visual, motor, and speech cortex. A prospective national multicenter clinical trial is currently being planned.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3