A decrease in the neuroprotective effects of acute spinal cord decompression according to injury severity: introducing the concept of a ceiling effect

Author:

Prasse Tobias12,Khaing Zin Z.1,Cates Lindsay N.1,Dewees Dane M.1,Hyde Jeffrey E.1,Bredow Jan3,Hofstetter Christoph P.1

Affiliation:

1. Department of Neurological Surgery, University of Washington, Seattle, Washington;

2. Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne; and

3. Department of Orthopedics and Trauma Surgery, Krankenhaus Porz am Rhein, University of Cologne, Germany

Abstract

OBJECTIVE Acute traumatic spinal cord injury (tSCI) is followed by a prolonged period of secondary neuroglial cell death. Neuroprotective interventions, such as surgical spinal cord decompression, aim to mitigate secondary injury. In this study, the authors explore whether the effect size of posttraumatic neuroprotective spinal cord decompression varies with injury severity. METHODS Seventy-one adult female Long Evans rats were subjected to a thoracic tSCI using a third-generation spinal contusion device. Moderate and severe tSCI were defined by recorded impact force delivered to the spinal cord. Immediately after injury (< 15 minutes), treatment cohorts underwent either a decompressive durotomy or myelotomy. Functional recovery was documented using the Basso, Beattie, and Bresnahan locomotor scale, and tissue sparing was documented using histological analysis. RESULTS Moderate and severe injuries were separated at a cutoff point of 231.8 kdyn peak impact force based on locomotor recovery at 8 weeks after injury. Durotomy improved hindlimb locomotor recovery 8 weeks after moderate trauma (p < 0.01), but not after severe trauma (p > 0.05). Myelotomy led to increased tissue sparing (p < 0.0001) and a significantly higher number of spared motor neurons (p < 0.05) in moderate trauma, but no such effect was noted in severely injured rats (p > 0.05). Within the moderate injury group, myelotomy also resulted in significantly more spared tissue when compared with durotomy-only animals (p < 0.01). CONCLUSIONS These results suggest that the neuroprotective effects of surgical spinal cord decompression decrease with increasing injury severity in a rodent tSCI model.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference38 articles.

1. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain;Ma VY,2014

2. Epidemiology, demographics, and pathophysiology of acute spinal cord injury;Sekhon LH,2001

3. Civilian gun shot wounds associated with spinal injuries;Ge L,2022

4. Vascular events after spinal cord injury: contribution to secondary pathogenesis;Mautes AE,2000

5. Mechanical properties of dura mater from the rat brain and spinal cord;Maikos JT,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3