Using an artificial neural network to predict traumatic brain injury

Author:

Hale Andrew T.12,Stonko David P.23,Lim Jaims2,Guillamondegui Oscar D.234,Shannon Chevis N.245,Patel Mayur B.2674

Affiliation:

1. Vanderbilt University School of Medicine, Medical Scientist Training Program;

2. Vanderbilt University School of Medicine, Nashville, Tennessee;

3. Johns Hopkins Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland;

4. Department of Neurosurgery, Vanderbilt University Medical Center and Division of Pediatric Neurosurgery, Monroe Carell Jr. Children’s Hospital of Vanderbilt University; and

5. Surgical Outcomes Center for Kids, Monroe Carell Jr. Children’s Hospital of Vanderbilt University, Nashville, Tennessee

6. Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Departments of Surgery and Hearing and Speech Sciences, Section of Surgical Sciences, Vanderbilt University Medical Center;

7. Center for Health Services Research, Vanderbilt Brain Institute, Vanderbilt University Medical Center and Geriatric Research, Education and Clinical Center Service, Surgical Service, Department of Veterans Affairs Medical Center, Tennessee Valley Health Care System;

Abstract

OBJECTIVEPediatric traumatic brain injury (TBI) is common, but not all injuries require hospitalization. A computational tool for ruling in patients who will have a clinically relevant TBI (CRTBI) would be valuable, providing an evidence-based way to safely discharge children who are at low risk for a CRTBI. The authors hypothesized that an artificial neural network (ANN) trained on clinical and radiologist-interpreted imaging metrics could provide a tool for identifying patients likely to suffer from a CRTBI.METHODSThe authors used the prospectively collected, publicly available, multicenter Pediatric Emergency Care Applied Research Network (PECARN) TBI data set. All patients under the age of 18 years with TBI and admission head CT imaging data were included. The authors constructed an ANN using clinical and radiologist-interpreted imaging metrics in order to predict a CRTBI, as previously defined by PECARN: 1) neurosurgical procedure, 2) intubation > 24 hours as direct result of the head trauma, 3) hospitalization ≥ 48 hours and evidence of TBI on a CT scan, or 4) death due to TBI.RESULTSAmong 12,902 patients included in this study, 480 were diagnosed with CRTBI. The authors’ ANN had a sensitivity of 99.73% with precision of 98.19%, accuracy of 97.98%, negative predictive value of 91.23%, false-negative rate of 0.0027%, and specificity for CRTBI of 60.47%. The area under the receiver operating characteristic curve was 0.9907.CONCLUSIONSThe authors are the first to utilize artificial intelligence to predict a CRTBI in a clinically meaningful manner, using radiologist-interpreted CT information, in order to identify pediatric patients likely to suffer from a CRTBI. This proof-of-concept study lays the groundwork for future studies incorporating iterations of this algorithm directly into the electronic medical record for real-time, data-driven predictive assistance to physicians.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3